论文标题
$ f(t,b)$理论IV:Noether对称分析中的各向异性空间
Anisotropic spacetimes in $f(T,B)$ theory IV: Noether symmetry analysis
论文作者
论文摘要
Noether对称分析应用于$ f(t,b)$ - 理论中各向异性背景中的场方程分析。我们考虑$ f \ left(t,b \ right)= t+f \ left(b \ right)$,它描述了边界标量$ b $引入的TEGR的小偏差。对于Bianchi \ i,Bianchi III和Kantowski-Sachs几何形状存在MinisuperSpace描述,并应用了Noether的定理。我们研究了不变点转换的存在。我们发现,对于Bianchi I时空,重力场方程是可用于$ f \ left(b \ right)= - \ frac {b}λ\ ln b $理论的liouville。得出分析解决方案,并讨论了Noether对称性在量子宇宙学的Wheeler-Dewitt方程中的应用。
The Noether symmetry analysis is applied for the analysis of the field equations in an anisotropic background in $f(T,B)$-theory. We consider the $f\left( T,B\right) =T+F\left( B\right) $ which describes a small deviation from TEGR introduced by the boundary scalar $B$. For the Bianchi\ I, Bianchi III and Kantowski-Sachs geometries there exists a minisuperspace description and Noether's theorems are applied. We investigate the existence of invariant point transformations. We find that for the Bianchi I spacetime the gravitational field equations are Liouville integrable for the $F\left( B\right) =-\frac{B}λ\ln B$ theory. The analytic solution is derived and the application of Noether symmetries to the Wheeler-DeWitt equation of quantum cosmology is discussed.