论文标题
X射线光电子光谱研究的N-gainp/n-alinp(100)表面和异质面的带能量图(100)
Band energy diagrams of n-GaInP/n-AlInP(100) surfaces and heterointerfaces studied by X-ray photoelectron spectroscopy
论文作者
论文摘要
晶格匹配的N型ALINP(100)电荷选择性接触通常是在N-P Gainp(100)高效iii-V多峰太阳能或光电油化学细胞中的N-P Gainp(100)上种植的。在此异质方面的电子选择性和价值频段偏移可以极大地限制细胞性能。了解Gainp/Alinp异质面的原子和电子特性对于降低IIII-V多期设备中光电流损失至关重要。在我们的论文中,我们研究了X射线光电子光谱(XPS)的N-gainp/n-alinp异质结构的化学组成和电子特性。为了模仿接触材料的原位逐步沉积的原位界面实验,将1 nm-50 nm厚的n-alinp(100)外延层在n-Gainp(100)缓冲层上生长在N-GAAS(100)底物上(100)底物,由金属有机蒸气相位epipaxy。我们观察到(2x2)/c(4x2)低能电子衍射模式,沿[01-1]方向具有特征性弥漫性条纹,这是由于ALINP(100)和Gainp(100)(100)正面表面的P-P二聚体引起的。原子成分分析证实了两个表面上的PICH终止。角度分辨XPS的测量结果显示,在P 2P峰中,表面核心水平移位为0.9 eV,并且没有界面核心水平移位。我们将P2P光谱中的表面化学移位分配给表面上的P-P键。我们发现(2x2)/c(4x2)表面上的向上表带弯曲最有可能是由局部间隙电子状态引起的。局部电子状态固定费米水平保留在n-ainp/n-alinp异质结构中。 XPS得出了0.2 eV的价谱带,并提出了N-N连接的带对齐图模型。
Lattice matched n-type AlInP(100) charge selective contacts are commonly grown on n-p GaInP(100) top absorbers in high-efficiency III-V multijunction solar or photoelectrochemical cells. The cell performance can be greatly limited by the electron selectivity and valance band offset at this heterointerface. Understanding of the atomic and electronic properties of the GaInP/AlInP heterointerface is crucial for the reduction of photocurrent losses in III-V multijunction devices. In our paper, we investigated chemical composition and electronic properties of n-GaInP/n-AlInP heterostructures by X-ray photoelectron spectroscopy (XPS). To mimic an in-situ interface experiment with in-situ stepwise deposition of the contact material, 1 nm - 50 nm thick n-AlInP(100) epitaxial layers were grown on n-GaInP(100) buffer layer on n-GaAs(100) substrates by metal organic vapor phase epitaxy. We observed (2x2)/c(4x2) low-energy electron diffraction patterns with characteristic diffuse streaks along the [01-1] direction due to P-P dimers on both AlInP(100) and GaInP(100) as-prepared surfaces. Atomic composition analysis confirmed P-rich termination on both surfaces. Angle-resolved XPS measurements revealed a surface core level shift of 0.9 eV in P 2p peaks and the absence of interface core level shifts. We assigned the surface chemical shift in the P2p spectrum to P-P bonds on a surface. We found an upward surface band bending on the (2x2)/c(4x2) surfaces most probably caused by localized mid-gap electronic states. Pinning of the Fermi level by localized electronic states remained in n-GaInP/n-AlInP heterostructures. A valence band offset of 0.2 eV was derived by XPS and band alignment diagram models for the n-n junctions were suggested.