论文标题
学位$ 3 $相对不变的统一互动
Degree $3$ relative invariant for unitary involutions
论文作者
论文摘要
使用对非裂开的简单连接组的ROST不变性,我们为具有同构或判别代数的一对正交或统一的差异定义了相对度$ 3 $的共同体学不变性。本文的主要目的是在统一情况下研究这种不变的一般属性,即外部类型$ {\ sf a} $下的托架。如果底层代数被拆分,则可以使用Hermitian形式的痕迹形式来根据二次形式的Arason不变性来重新解释它。当具有统一性的代数具有符号或正交下降,或符号或正交二次扩展时,我们提供了单位和正交或符号类型的相应不变性之间的比较定理。我们还证明,相对不变的$ 4 $分类,至少要通过基础二次扩展的非平凡自动形态结合。通常,选择一个特定的基点,相对不变的也会在基础代数的一些额外条件下产生绝对的阿拉森不变。值得注意的是,如果代数甚至具有共同指数,因此它承认双曲线的反常,这是唯一的同构,我们会得到所谓的{\ em夸张} arason不变性。另外,假设代数的学位$ 8 $,我们还可以定义一个{\ em Docomposable} Arason不变性。通常,它与双曲线阿拉森不变不相吻合,因为双曲线的相关性不必完全分解。
Using the Rost invariant for non split simply connected groups, we define a relative degree $3$ cohomological invariant for pairs of orthogonal or unitary involutions having isomorphic Clifford or discriminant algebras. The main purpose of this paper is to study general properties of this invariant in the unitary case, that is for torsors under groups of outer type ${\sf A}$. If the underlying algebra is split, it can be reinterpreted in terms of the Arason invariant of quadratic forms, using the trace form of a hermitian form. When the algebra with unitary involution has a symplectic or orthogonal descent, or a symplectic or orthogonal quadratic extension, we provide comparison theorems between the corresponding invariants of unitary and orthogonal or symplectic types. We also prove the relative invariant is classifying in degree $4$, at least up to conjugation by the non-trivial automorphism of the underlying quadratic extension. In general, choosing a particular base point, the relative invariant also produces absolute Arason invariants, under some additional condition on the underlying algebra. Notably, if the algebra has even co-index, so that it admits a hyperbolic involution, which is unique up to isomorphism, we get a so-called {\em hyperbolic} Arason invariant. Assuming in addition the algebra has degree $8$, we may also define a {\em decomposable} Arason invariant. It generally does not coincide with the hyperbolic Arason invariant, as the hyperbolic involution need not be totally decomposable.