论文标题

布尔人的强化学习政策摘要规则

Boolean Decision Rules for Reinforcement Learning Policy Summarisation

论文作者

McCarthy, James, Nair, Rahul, Daly, Elizabeth, Marinescu, Radu, Dusparic, Ivana

论文摘要

强化学习(RL)政策的解释性仍然是一个具有挑战性的研究问题,尤其是在安全环境中考虑RL时。理解RL政策的决定和意图提供了将安全纳入政策的途径,通过限制不良行动。我们建议使用布尔决策规则模型来创建基于事后规则的代理政策的摘要。我们使用经过训练的熔岩网格世界训练的DQN代理评估了我们的方法,并表明,鉴于该网格世界的手工制作的功能表示,可以创建简单的广义规则,从而提供代理商策略的事后解释摘要。我们讨论了通过使用该规则模型生成的规则作为对代理策略施加的约束,并讨论如何创建对代理策略的简单规则摘要可能有助于RL代理的调试过程,从而讨论了将安全引入RL代理政策的可能途径。

Explainability of Reinforcement Learning (RL) policies remains a challenging research problem, particularly when considering RL in a safety context. Understanding the decisions and intentions of an RL policy offer avenues to incorporate safety into the policy by limiting undesirable actions. We propose the use of a Boolean Decision Rules model to create a post-hoc rule-based summary of an agent's policy. We evaluate our proposed approach using a DQN agent trained on an implementation of a lava gridworld and show that, given a hand-crafted feature representation of this gridworld, simple generalised rules can be created, giving a post-hoc explainable summary of the agent's policy. We discuss possible avenues to introduce safety into a RL agent's policy by using rules generated by this rule-based model as constraints imposed on the agent's policy, as well as discuss how creating simple rule summaries of an agent's policy may help in the debugging process of RL agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源