论文标题
在加权sjöstrand类和gabor框架边界中伪差异操作员光谱的Lipschitz连续性
Lipschitz Continuity of Spectra of Pseudodifferential Operators in a Weighted Sjöstrand Class and Gabor Frame Bounds
论文作者
论文摘要
我们研究了伪差算子的单参数家族,其Weyl符号是通过扩张而获得的,在加权Sjöstrand类中的符号平滑变形。我们表明它们的光谱边缘是Lipschitz的扩张或变形参数的连续函数。每个光谱差距的边缘也适当地估计。这些陈述将贝里萨德的开创性结果扩展到光谱边缘的Lipschitz连续性,该频谱边缘具有定期符号的家族的频谱边缘,并将其定期符号的家族带到只有轻度规律性假设的大量符号。 抽象结果用于证明Gabor系统$ \ MATHCAL {g,αλ)$的框架界限,其中$λ$是一组不均匀的时间频移,$α> 0 $,$ g \ in m^1_2(\ Mathbb {\ nathbb {r} d)$ contections $ lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips lips。这解决了有关临界密度附近的Gabor帧数的确切爆炸率的问题。
We study one-parameter families of pseudodifferential operators whose Weyl symbols are obtained by dilation and a smooth deformation of a symbol in a weighted Sjöstrand class. We show that their spectral edges are Lipschitz continuous functions of the dilation or deformation parameter. Suitably local estimates hold also for the edges of every spectral gap. These statements extend Bellissard's seminal results on the Lipschitz continuity of spectral edges for families of operators with periodic symbols to a large class of symbols with only mild regularity assumptions. The abstract results are used to prove that the frame bounds of a family of Gabor systems $\mathcal{G}(g,αΛ)$, where $Λ$ is a set of non-uniform time-frequency shifts, $α>0$, and $g\in M^1_2(\mathbb{R}^d)$, are Lipschitz continuous functions in $α$. This settles a question about the precise blow-up rate of the condition number of Gabor frames near the critical density.