论文标题

通过基于补丁的时间冗余优化来增强视频超级分辨率

Boosting Video Super Resolution with Patch-Based Temporal Redundancy Optimization

论文作者

Huang, Yuhao, Dong, Hang, Pan, Jinshan, Zhu, Chao, Guo, Yu, Liu, Ding, Fu, Lean, Wang, Fei

论文摘要

现有视频超分辨率(VSR)算法的成功主要是从相邻框架中利用时间信息。但是,这些方法都没有讨论具有固定物体和背景的贴片中时间冗余的影响,并且通常在相邻框架中使用所有信息而没有任何歧视。在本文中,我们观察到时间冗余将对信息传播产生不利影响,这限制了最现有的VSR方法的性能。在这一观察过程中,我们旨在以优化的方式处理时间冗余贴片来改善现有的VSR算法。我们开发了两种简单而有效的插件方法,以提高广泛使用的公共视频中现有的本地和非本地传播算法的性能。为了更全面地评估现有VSR算法的鲁棒性和性能,我们还收集了一个新数据集,其中包含各种公共视频作为测试集。广泛的评估表明,所提出的方法可以显着提高野生场景中收集的视频中现有VSR方法的性能,同时维持其在现有常用数据集上的性能。该代码可在https://github.com/hyhsimon/boosted-vsr上找到。

The success of existing video super-resolution (VSR) algorithms stems mainly exploiting the temporal information from the neighboring frames. However, none of these methods have discussed the influence of the temporal redundancy in the patches with stationary objects and background and usually use all the information in the adjacent frames without any discrimination. In this paper, we observe that the temporal redundancy will bring adverse effect to the information propagation,which limits the performance of the most existing VSR methods. Motivated by this observation, we aim to improve existing VSR algorithms by handling the temporal redundancy patches in an optimized manner. We develop two simple yet effective plug and play methods to improve the performance of existing local and non-local propagation-based VSR algorithms on widely-used public videos. For more comprehensive evaluating the robustness and performance of existing VSR algorithms, we also collect a new dataset which contains a variety of public videos as testing set. Extensive evaluations show that the proposed methods can significantly improve the performance of existing VSR methods on the collected videos from wild scenarios while maintain their performance on existing commonly used datasets. The code is available at https://github.com/HYHsimon/Boosted-VSR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源