论文标题
使用状态准备单位的量子断层扫描
Quantum tomography using state-preparation unitaries
论文作者
论文摘要
我们描述算法,以获取$ d $维量子状态的大概经典描述,当访问准备它的单一(及其逆)时。对于纯状态,我们表征了$ \ ell_q $ -norm错误的查询复杂性,直到对数因素。作为一种特殊情况,我们表明它需要$ \widetildeθ(d/\ varepsilon)$ nimaries的应用程序,以获得$ \ varepsilon $ - $ \ $ \ ell_2 $ - approximation-approximation。对于混合国家,我们考虑了一个类似的模型,其中统一准备了国家的净化。在此模型中,我们给出了一种有效的算法,以获取schatten $ q $ norm估算等级$ r $混合状态的估计,从而提供接近最佳的查询上限。特别是,我们表明可以使用$ \ widetilde {\ Mathcal {o}}}(dr/\ varepsilon)$ queries获得痕迹 - norm($ q = 1 $)估计。这改善了(假设我们更强大的输入模型)在Haah等人的算法上$ \ varepsilon $依赖性(2017),该算法使用了$ \ widetilde {\ natercal {o}}(dr/\ varepsilon^2)$ copies $ copie of $ \ wideTilde {\ mathcal {o}}(\ wideTilde {\ mathcal {o}})。据我们所知,纯状态断层扫描的样本效率最高的结果来自将仿制药的混合状态层析成像算法的排名设定为$ 1 $,这在计算上可能是要求的。我们描述了易于实施的纯状态的样本 - 最佳算法。一路上,我们表明,归一化向量的$ \ ell_ \ infty $ norm估计值诱导该向量的a(稍差)$ \ ell_q $ - norm估计,而不会在精确度中失去尺寸依赖性因素。我们还开发了一个相位估计的公正和对称版本,其中估计值的概率分布围绕真实值。最后,我们提供了一种有效的方法来估计多个期望值,比Huggins等人(2021)改善了测量算子没有完全重叠时。
We describe algorithms to obtain an approximate classical description of a $d$-dimensional quantum state when given access to a unitary (and its inverse) that prepares it. For pure states we characterize the query complexity for $\ell_q$-norm error up to logarithmic factors. As a special case, we show that it takes $\widetildeΘ(d/\varepsilon)$ applications of the unitaries to obtain an $\varepsilon$-$\ell_2$-approximation of the state. For mixed states we consider a similar model, where the unitary prepares a purification of the state. In this model we give an efficient algorithm for obtaining Schatten $q$-norm estimates of a rank-$r$ mixed state, giving query upper bounds that are close to optimal. In particular, we show that a trace-norm ($q=1$) estimate can be obtained with $\widetilde{\mathcal{O}}(dr/\varepsilon)$ queries. This improves (assuming our stronger input model) the $\varepsilon$-dependence over the algorithm of Haah et al.\ (2017) that uses a joint measurement on $\widetilde{\mathcal{O}}(dr/\varepsilon^2)$ copies of the state. To our knowledge, the most sample-efficient results for pure-state tomography come from setting the rank to $1$ in generic mixed-state tomography algorithms, which can be computationally demanding. We describe sample-optimal algorithms for pure states that are easy and fast to implement. Along the way we show that an $\ell_\infty$-norm estimate of a normalized vector induces a (slightly worse) $\ell_q$-norm estimate for that vector, without losing a dimension-dependent factor in the precision. We also develop an unbiased and symmetric version of phase estimation, where the probability distribution of the estimate is centered around the true value. Finally, we give an efficient method for estimating multiple expectation values, improving over the recent result by Huggins et al.\ (2021) when the measurement operators do not fully overlap.