论文标题
弱$ \ $ \数学Z $ - 结构和一式式群组
Weak $\mathcal Z$-structures and one-relator groups
论文作者
论文摘要
由双曲线和$ cat(0)$组的边界的概念,“群组边界的本地同源性属性”的概念引起关于诺维科夫的猜想,以$ g $。从那时起,某些类别的组被证明会接受一个弱$ \ Mathcal z $ - 结构(例如,请参见C.R. Guilbault的某些类别的弱$ \ $ \ $ \ $ \ MATHCAL Z $结构”),但是是否构成了$ \ Mathcal f $ puss的每个类型的类型f $ pucction c.r. guilbault)。在本文中,我们表明,每个无扭转的一级式群体组都承认$ \ Mathcal z $结构,表明它们在无穷大处都是适当的非球形;此外,在$ 1 $的情况下,相应的弱$ \ Mathcal Z $ - 绑定具有圆形或夏威夷耳环的形状,具体取决于该组几乎是表面组。最后,我们将此结果扩展到仍然满足Freiheitssatz属性的更广泛的组。
Motivated by the notion of boundary for hyperbolic and $CAT(0)$ groups, M. Bestvina in "Local Homology Properties of Boundaries of Groups" introduced the notion of a (weak) $\mathcal Z$-structure and (weak) $\mathcal Z$-boundary for a group $G$ of type $\mathcal F$ (i.e., having a finite $K(G,1)$ complex), with implications concerning the Novikov conjecture for $G$. Since then, some classes of groups have been shown to admit a weak $\mathcal Z$-structure (see "Weak $\mathcal Z$-structures for some classes of groups" by C.R. Guilbault for example), but the question whether or not every group of type $\mathcal F$ admits such a structure remains open. In this paper, we show that every torsion free one-relator group admits a weak $\mathcal Z$-structure, by showing that they are all properly aspherical at infinity; moreover, in the $1$-ended case the corresponding weak $\mathcal Z$-boundary has the shape of either a circle or a Hawaiian earring depending on whether the group is a virtually surface group or not. Finally, we extend this result to a wider class of groups still satisfying a Freiheitssatz property.