论文标题

通过建模半活性冲击吸收器来使用神经网络

Using Neural Networks by Modelling Semi-Active Shock Absorber

论文作者

Zink, Moritz, Schiele, Martin, Ivanov, Valentin

论文摘要

永久增加的车载汽车控制系统需要新的数字映射方法,该方法可以从适应性和鲁棒性方面提高功能,并使其更容易的在线软件更新。从许多最近的研究中可以得出结论,应用神经网络(NN)的各种方法可以是汽车控制系统设计中相关数字双(DT)工具的良好候选者,例如,用于控制器参数化和条件监测。但是,基于NN的DT对用于培训和设计的足够数据有很大的要求。在这方面,本文提出了一种方法,该方法演示了如何通过在DT框架内的半活性减震器建模来有效地处理回归任务。该方法基于时间序列增强技术的适应,以增加后者的差异。这样的解决方案提供了详细的数据工程方法的背景,以用于复杂数据库的数据准备。

A permanently increasing number of on-board automotive control systems requires new approaches to their digital mapping that improves functionality in terms of adaptability and robustness as well as enables their easier on-line software update. As it can be concluded from many recent studies, various methods applying neural networks (NN) can be good candidates for relevant digital twin (DT) tools in automotive control system design, for example, for controller parameterization and condition monitoring. However, the NN-based DT has strong requirements to an adequate amount of data to be used in training and design. In this regard, the paper presents an approach, which demonstrates how the regression tasks can be efficiently handled by the modeling of a semi-active shock absorber within the DT framework. The approach is based on the adaptation of time series augmentation techniques to the stationary data that increases the variance of the latter. Such a solution gives a background to elaborate further data engineering methods for the data preparation of sophisticated databases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源