论文标题
学习共同监管的跨模式超级分辨率的相互调制
Learning Mutual Modulation for Self-Supervised Cross-Modal Super-Resolution
论文作者
论文摘要
自我监督的跨模式超分辨率(SR)可以克服获取配对训练数据的困难,但由于只有低分辨率(LR)源和高分辨率源(HR)指南指导图像,因此具有挑战性。现有的方法利用伪空间中的伪监督或弱监督,因此产生了模糊或不忠于源方式的结果。为了解决这个问题,我们提出了一个相互调制的SR(MMSR)模型,该模型通过相互调制策略来解决任务,包括源至指南调制和指南源调制。在这些调制中,我们开发了跨域自适应过滤器,以完全利用跨模式的空间依赖性,并有助于诱导源以模拟指南的分辨率并诱导指南模仿源的模态特征。此外,我们采用周期一致性限制来以完全自欺欺人的方式训练MMSR。各种任务的实验证明了我们的MMSR的最新性能。
Self-supervised cross-modal super-resolution (SR) can overcome the difficulty of acquiring paired training data, but is challenging because only low-resolution (LR) source and high-resolution (HR) guide images from different modalities are available. Existing methods utilize pseudo or weak supervision in LR space and thus deliver results that are blurry or not faithful to the source modality. To address this issue, we present a mutual modulation SR (MMSR) model, which tackles the task by a mutual modulation strategy, including a source-to-guide modulation and a guide-to-source modulation. In these modulations, we develop cross-domain adaptive filters to fully exploit cross-modal spatial dependency and help induce the source to emulate the resolution of the guide and induce the guide to mimic the modality characteristics of the source. Moreover, we adopt a cycle consistency constraint to train MMSR in a fully self-supervised manner. Experiments on various tasks demonstrate the state-of-the-art performance of our MMSR.