论文标题

定量轩尼诗 - 米勒纳定理通过密度概念

Quantitative Hennessy-Milner Theorems via Notions of Density

论文作者

Forster, Jonas, Goncharov, Sergey, Hofmann, Dirk, Nora, Pedro, Schröder, Lutz, Wild, Paul

论文摘要

经典的轩尼诗 - 米勒纳定理是分析并发过程的重要工具。它保证在有限分支标记的过渡系统中可以通过模态公式来区分的任何两个非生物性状态。此后,已经为广泛的逻辑和系统类型建立了该定理的大量变体,包括定量版本,其中行为距离的下限(例如,在加权,度量或概率过渡系统中〜)通过定量模态公式见证了该定理。定性版本和定量版本都在煤层逻辑的框架内都适合,并且距离距离的距离为数量,但要受到某些限制,例如所谓的价值数量。虽然先前的定量膜结构轩尼诗型 - 米勒纳定理仅适用于(伪 - )度量空间的集合函子的升降机,但在目前的工作中,我们提供了定量的煤层轩尼诗 - 毛孔米勒定理,该定理适用于公制空间本质的函子;值得注意的是,我们首次涵盖了众所周知的轩尼诗 - 米勒纳定理,用于连续概率过渡系统,其中通过Borel量度对公制空间进行了过渡。在此过程中,我们还放宽了对量化的限制,并在封闭概念上和密度的概念中对技术说明进行了参数,从而提供了Stone-Weiersstrass定理的相关变体;这使我们能够涵盖行为超法。

The classical Hennessy-Milner theorem is an important tool in the analysis of concurrent processes; it guarantees that any two non-bisimilar states in finitely branching labelled transition systems can be distinguished by a modal formula. Numerous variants of this theorem have since been established for a wide range of logics and system types, including quantitative versions where lower bounds on behavioural distance (e.g.~in weighted, metric, or probabilistic transition systems) are witnessed by quantitative modal formulas. Both the qualitative and the quantitative versions have been accommodated within the framework of coalgebraic logic, with distances taking values in quantales, subject to certain restrictions, such as being so-called value quantales. While previous quantitative coalgebraic Hennessy-Milner theorems apply only to liftings of set functors to (pseudo-)metric spaces, in the present work we provide a quantitative coalgebraic Hennessy-Milner theorem that applies more widely to functors native to metric spaces; notably, we thus cover, for the first time, the well-known Hennessy-Milner theorem for continuous probabilistic transition systems, where transitions are given by Borel measures on metric spaces, as an instance. In the process, we also relax the restrictions imposed on the quantale, and additionally parametrize the technical account over notions of closure and, hence, density, providing associated variants of the Stone-Weierstrass theorem; this allows us to cover, for instance, behavioural ultrametrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源