论文标题
在拓扑机械超材料中,合成非甲状化非线性波的行为
Synthetically Non-Hermitian Nonlinear Wave-like Behavior in a Topological Mechanical Metamaterial
论文作者
论文摘要
拓扑机械超材料已实现了控制应力和变形传播的新方法。通过麦克斯韦晶格(Maxwell Lattices)举例说明,它们已经使用线性形式主义进行了广泛的研究。本文中,我们通过使用几何数值模拟和实验来探索其较大的变形准静态响应,研究了二维拓扑麦克斯韦晶格。我们观察到空间非线性波样现象,例如谐波产生,局部域切换,扩增增强的频率转换和孤立波。我们将线性化的同质化系统进一步映射到非热的,非近代的一维波方程,揭示了一维活动系统中二维拓扑麦克斯韦晶格的变形场与非线性动力学现象之间的等效性。我们的研究为拓扑机械材料开辟了一个新的制度,并在包括适应性和智能材料以及机械逻辑在内的领域扩大了其应用潜力,其中非线性动力学的概念可用于创建复杂的,量身定制的空间变形,并极大地超过常规弹性。
Topological mechanical metamaterials have enabled new ways to control stress and deformation propagation. Exemplified by Maxwell lattices, they have been studied extensively using a linearized formalism. Herein, we study a two-dimensional topological Maxwell lattice by exploring its large deformation quasi-static response using geometric numerical simulations and experiments. We observe spatial nonlinear wave-like phenomena such as harmonic generation, localized domain switching, amplification-enhanced frequency conversion, and solitary waves. We further map our linearized, homogenized system to a non-Hermitian, non-reciprocal, one-dimensional wave equation, revealing an equivalence between the deformation fields of two-dimensional topological Maxwell lattices and nonlinear dynamical phenomena in one-dimensional active systems. Our study opens a new regime for topological mechanical metamaterials and expands their application potential in areas including adaptive and smart materials, and mechanical logic, wherein concepts from nonlinear dynamics may be used to create intricate, tailored spatial deformation and stress fields greatly exceeding conventional elasticity.