论文标题
在声学空间捕获重新接收中适应假阳性,具有可变的源水平,嘈杂的轴承和不均匀的空间密度
Accommodating false positives within acoustic spatial capture-recapture, with variable source levels, noisy bearings and an inhomogeneous spatial density
论文作者
论文摘要
被动声监测是一种调查野生动植物种群的有前途的方法,而野生动物种群比视觉更易于检测。当可以在传感器阵列上唯一地识别动物发声时,可能存在通过声学空间捕获 - 接收器(ASCR)估算种群密度的潜力。但是,声音分类是不完美的,在某些情况下,仅在单个传感器(“单例”)上检测到的声音很高并非来自目标物种。我们提出了一项案例研究,该案例研究2010年在Beaufort Sea收集的Bowhead Whale Call(Baleana Mysticetus),其中包含这种假阳性。我们提出了一个新颖的ASCR扩展,该扩展是通过截断单例并根据至少两个传感器检测到的调用来对假阳性的强大扩展。我们通过建模可变的声源水平,模型不均匀的呼叫空间密度,并包括具有不同测量误差的轴承,从而实现个人级检测异质性。我们通过仿真显示该方法正确指定后会产生几乎稳定的估计。忽略源水平的变化导致了强烈的负偏差,而忽略不均匀密度会导致严重的正偏见。案例研究分析表明,距离海岸约30公里的较高呼叫密度带。据估计,有59.8%的单例是误报。
Passive acoustic monitoring is a promising method for surveying wildlife populations that are easier to detect acoustically than visually. When animal vocalisations can be uniquely identified on an array of sensors, the potential exists to estimate population density through acoustic spatial capture-recapture (ASCR). However, sound classification is imperfect, and in some situations a high proportion of sounds detected on just a single sensor ('singletons') are not from the target species. We present a case study of bowhead whale calls (Baleana mysticetus) collected in the Beaufort Sea in 2010 containing such false positives. We propose a novel extension of ASCR that is robust to false positives by truncating singletons and conditioning on calls being detected by at least two sensors. We allow for individual-level detection heterogeneity through modelling a variable sound source level, model inhomogeneous call spatial density, and include bearings with varying measurement error. We show via simulation that the method produces near-unbiased estimates when correctly specified. Ignoring source level variation resulted in a strong negative bias, while ignoring inhomogeneous density resulted in severe positive bias. The case study analysis indicated a band of higher call density approximately 30km from shore; 59.8% of singletons were estimated to have been false positives.