论文标题

在线混沌混合器的停留时间分布

Residence time distributions for in-line chaotic mixers

论文作者

Poumaëre, Nelson, Pier, Benoît, Raynal, Florence

论文摘要

我们研究了在线混沌混合器的停留时间分布;特别是,我们考虑KENIC,F-MIXER和多层层压混合器,以及模拟其行为并允许精确数学计算的合成模型。我们表明,无论涉及的混音器元素数量,分布都具有$ t^{-3} $尾巴,因此其形状始终远离高斯。这个$ t^{ - 3} $尾巴也无效二阶时刻和方差的使用。作为分布宽度的度量,我们考虑了平均绝对偏差,并表明,与标准偏差不同,它在大样本量的极限中收敛。最后,当改变元素数量和横截面的形状时,我们从停留时间的角度分析了不同内部混合器的性能。

We investigate the distributions of residence time for in-line chaotic mixers; in particular, we consider the Kenics, the F-mixer and the Multi-level laminating mixer, and also a synthetic model that mimics their behavior and allows exact mathematical calculations. We show that whatever the number of elements of mixer involved, the distribution possesses a $t^{-3}$ tail, so that its shape is always far from Gaussian. This $t^{-3}$ tail also invalidates the use of second-order moment and variance. As a measure for the width of the distribution, we consider the mean absolute deviation and show that, unlike the standard deviation, it converges in the limit of large sample size. Finally, we analyze the performances of the different in-line mixers from the residence-time point of view when varying the number of elements and the shape of the cross-section.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源