论文标题

带有输入压缩的边界概括误差:无限宽度网络的经验研究

Bounding generalization error with input compression: An empirical study with infinite-width networks

论文作者

Galloway, Angus, Golubeva, Anna, Salem, Mahmoud, Nica, Mihai, Ioannou, Yani, Taylor, Graham W.

论文摘要

估计深神经网络(DNN)的概括误差(GE)是一项重要任务,通常依赖于持有数据的可用性。根据单个训练集更好地预测GE的能力可能会产生总体DNN设计原则,以减少对试用和错误的依赖以及其他绩效评估优势。为了寻找与GE相关的数量,我们使用无限宽度DNN限制对绑定的MI进行了研究之间的相互信息(MI)。现有的基于输入压缩的GE绑定用于链接MI和GE。据我们所知,这代表了该界限的首次实证研究。为了凭经验伪造理论界限,我们发现它通常对于表现最佳模型而言通常很紧。此外,它在许多情况下检测到训练标签的随机化,反映了测试时间扰动的鲁棒性,并且只有很少的培训样本,效果很好。鉴于输入压缩是可以置信度估算的,这些结果是有希望的。

Estimating the Generalization Error (GE) of Deep Neural Networks (DNNs) is an important task that often relies on availability of held-out data. The ability to better predict GE based on a single training set may yield overarching DNN design principles to reduce a reliance on trial-and-error, along with other performance assessment advantages. In search of a quantity relevant to GE, we investigate the Mutual Information (MI) between the input and final layer representations, using the infinite-width DNN limit to bound MI. An existing input compression-based GE bound is used to link MI and GE. To the best of our knowledge, this represents the first empirical study of this bound. In our attempt to empirically falsify the theoretical bound, we find that it is often tight for best-performing models. Furthermore, it detects randomization of training labels in many cases, reflects test-time perturbation robustness, and works well given only few training samples. These results are promising given that input compression is broadly applicable where MI can be estimated with confidence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源