论文标题

视觉产品评论的深入分析

Deep Analysis of Visual Product Reviews

论文作者

Adak, Chandranath, Chattopadhyay, Soumi, Saqib, Muhammad

论文摘要

随着电子商务行业的扩散,分析客户反馈是服务提供商必不可少的。最近几天,可以注意到,客户将购买的产品图像以其评论分数上传。在本文中,我们承担了分析此类视觉评论的任务,这是非常新的。过去,研究人员致力于分析语言反馈,但是在这里,我们没有从语言评论中获得任何可能不存在的帮助,因为可以观察到最近的趋势,客户希望快速上传视觉反馈而不是输入语言反馈。我们提出了一个分层体系结构,其中高级模型参与产品分类,而低级模型则注意从客户提供的产品图像预测审核分数。我们通过采购真实的视觉产品评论来生成数据库,这非常具有挑战性。我们的体系结构通过对所采用的数据库进行广泛的实验,从而获得了一些有希望的结果。拟议的层次结构与单层最佳可比较体系结构相比,性能提高了57.48%。

With the proliferation of the e-commerce industry, analyzing customer feedback is becoming indispensable to a service provider. In recent days, it can be noticed that customers upload the purchased product images with their review scores. In this paper, we undertake the task of analyzing such visual reviews, which is very new of its kind. In the past, the researchers worked on analyzing language feedback, but here we do not take any assistance from linguistic reviews that may be absent, since a recent trend can be observed where customers prefer to quickly upload the visual feedback instead of typing language feedback. We propose a hierarchical architecture, where the higher-level model engages in product categorization, and the lower-level model pays attention to predicting the review score from a customer-provided product image. We generated a database by procuring real visual product reviews, which was quite challenging. Our architecture obtained some promising results by performing extensive experiments on the employed database. The proposed hierarchical architecture attained a 57.48% performance improvement over the single-level best comparable architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源