论文标题
管道中稀释悬浮液的惯性聚焦
Inertial focusing of a dilute suspension in pipe flow
论文作者
论文摘要
在壁结合的层流中刚性颗粒悬浮液的动力学呈现出几种非平凡和有趣的特征,包括颗粒有序,侧向传输以及稳定的优先位置(如Segré-Silberberg annulus)的出现。多个环的形成是一种特别令人困惑的现象,但仍未得到充分解释。在这里,我们提出了基于晶格玻尔兹曼(Boltzmann)和离散元素方法(DEM)的(周期性)管流中颗粒稀释液的数值模拟结果。我们的模拟在下游旅行时可以访问粒子的完整径向位置历史。这允许准确量化瞬态和稳态。我们观察到次级,内环的形成,并表明其位置总是向Segré-Silberberg转移,如果该通道足够长,则证明它实际上是Reynolds数字(重新)的短暂特征(re re),最高为600。我们量化了通道聚焦长度的变化($ l_s/2r $)。有趣的是,与点状粒子的理论预测不同,我们观察到,单个粒子和悬架随着RE的增加而增加。
The dynamics of rigid particle suspensions in a wall-bounded laminar flow present several non-trivial and intriguing features, including particle ordering, lateral transport, and the appearance of stable, preferential locations like the Segré-Silberberg annulus. The formation of more than one annulus is a particularly puzzling phenomenon that is still not fully explained. Here, we present numerical simulation results of a dilute suspension of particles in (periodic) pipe flow based on the lattice Boltzmann and the discrete element methods (DEM). Our simulations provide access to the full radial position history of the particles while traveling downstream. This allows to accurately quantify the transient and steady states. We observe the formation of the secondary, inner annulus and show that its position invariably shifts toward the Segré-Silberberg one if the channel is sufficiently long, proving that it is, in fact, a transient feature for Reynolds numbers (Re) up to 600. We quantify the variation of the channel focusing length ($L_s/2R$) with Re. Interestingly and unlike the theoretical prediction for a point-like particle, we observe that $L_s/2R$ increases with Re for both the single particle and the suspension.