论文标题
意识到历史记录:使用本地行为数据进行轨迹预测
Aware of the History: Trajectory Forecasting with the Local Behavior Data
论文作者
论文摘要
以前通过一个位置的历史轨迹可能有助于推断该位置当前代理的未来轨迹。尽管在高清图的指导下进行了轨迹预测的大大改善,但只有少数作品探讨了这样的当地历史信息。在这项工作中,我们将这些信息重新引入了轨迹预测系统的一种新类型的输入数据:本地行为数据,我们将其概念化为特定位置特定的历史轨迹的集合。局部行为数据有助于系统强调预测区域,并更好地了解静态地图对象对移动代理的影响。我们提出了一个新型的本地行为感知(LBA)预测框架,该框架通过融合观察到的轨迹,高清图和局部行为数据的信息来提高预测准确性。同样,在此类历史数据不足或不可用的地方,我们采用了本地行为(LBF)预测框架,该框架采用了基于知识的架构来推断丢失数据的影响。广泛的实验表明,通过这两个框架升级现有方法可显着提高其性能。特别是,LBA框架将SOTA方法在Nuscenes数据集上的性能提高了至少14%的K = 1度量。
The historical trajectories previously passing through a location may help infer the future trajectory of an agent currently at this location. Despite great improvements in trajectory forecasting with the guidance of high-definition maps, only a few works have explored such local historical information. In this work, we re-introduce this information as a new type of input data for trajectory forecasting systems: the local behavior data, which we conceptualize as a collection of location-specific historical trajectories. Local behavior data helps the systems emphasize the prediction locality and better understand the impact of static map objects on moving agents. We propose a novel local-behavior-aware (LBA) prediction framework that improves forecasting accuracy by fusing information from observed trajectories, HD maps, and local behavior data. Also, where such historical data is insufficient or unavailable, we employ a local-behavior-free (LBF) prediction framework, which adopts a knowledge-distillation-based architecture to infer the impact of missing data. Extensive experiments demonstrate that upgrading existing methods with these two frameworks significantly improves their performances. Especially, the LBA framework boosts the SOTA methods' performance on the nuScenes dataset by at least 14% for the K=1 metrics.