论文标题

加速牛顿 - 拉夫森葡萄方法用于最佳控制

Accelerated Newton-Raphson GRAPE methods for optimal control

论文作者

Goodwin, David L., Vinding, Mads Sloth

论文摘要

Liouville空间中介绍了基于Hessian的最佳控制方法,以减轻以前不希望的计算时间缩放时间。这种新方法是对最先进的牛顿 - 拉夫森葡萄法的改进,它是针对两种精确的时间启示器衍生技术得出的:辅助矩阵和Escalade方法。我们观察到,与牛顿 - 拉夫森葡萄法的最佳当前实施相比,对于具有现实条件的2级系统的集合,新的辅助矩阵和埃斯卡拉德·黑森斯的速度分别可以快4-200和70-600倍。

A Hessian based optimal control method is presented in Liouville space to mitigate previously undesirable polynomial scaling of computation time. This new method, an improvement to the state-of-the-art Newton-Raphson GRAPE method, is derived with respect to two exact time-propagator derivative techniques: auxiliary matrix and ESCALADE methods. We observed that compared to the best current implementation of Newton-Raphson GRAPE method, for an ensemble of 2-level systems, with realistic conditions, the new auxiliary matrix and ESCALADE Hessians can be 4-200 and 70-600 times faster, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源