论文标题
基于测量的量子计算的仪表理论
The Gauge Theory of Measurement-Based Quantum Computation
论文作者
论文摘要
基于测量的量子计算(MBQC)是量子计算的模型,它使用局部测量而不是单一门。在这里,我们解释说,MBQC程序在基本量规理论中具有基本基础。这种观点为MBQC的全球方面提供了理论基础。仪表转换反映了在不同局部参考框架中制定相同MBQC计算的自由度。 MBQC和量规理论概念之间的主要识别是:(i)MBQC的计算输出是量规场的全能,(ii)测量基础的适应基础,以补救量子测量的固有随机性是通过量规变换实现的。 MBQC的仪表理论也在表征受对称保护的托与托法(SPT)有序状态的纠缠结构中发挥作用,这是MBQC的资源。我们的框架将MBQC定位在更广泛的凝结物质和高能理论的背景下。
Measurement-Based Quantum Computation (MBQC) is a model of quantum computation, which uses local measurements instead of unitary gates. Here we explain that the MBQC procedure has a fundamental basis in an underlying gauge theory. This perspective provides a theoretical foundation for global aspects of MBQC. The gauge transformations reflect the freedom of formulating the same MBQC computation in different local reference frames. The main identifications between MBQC and gauge theory concepts are: (i) the computational output of MBQC is a holonomy of the gauge field, (ii) the adaptation of measurement basis that remedies the inherent randomness of quantum measurements is effected by gauge transformations. The gauge theory of MBQC also plays a role in characterizing the entanglement structure of symmetry-protected topologically (SPT) ordered states, which are resources for MBQC. Our framework situates MBQC in a broader context of condensed matter and high energy theory.