论文标题
多通道拓扑临近效应
Multichannel topological Kondo effect
论文作者
论文摘要
库仑封锁的$ m $ -Majorana岛与普通金属铅相结合,实现了一种新型的近野效应,在正交组$ SO(M)$下,有效的杂质“自旋”转换。杂质自旋源于该岛的非本地拓扑基态退化,因此该作用被称为拓扑结成效应。我们介绍了拓扑临时模型的出色动机$ N $渠道的概括。从最简单的情况开始,$ n = 2 $,我们猜想一个稳定的中间耦合固定点,并评估所得的低温杂质熵。杂质熵表明可以在$ n = 2 $型号中实现出现的斐波那契。我们还将案例$ n = 2 $,$ m = 4 $映射到常规的4频道近托型号,并在中间固定点找到电导率。通过使用扰动重新归一化组,我们还分析了固定点移至弱耦合的较大$ n $限制。在各向同性极限中,我们找到了一个中间稳定的固定点,该点稳定,可以“交换”各向异性耦合,但对通道各向异性不稳定。我们评估固定点杂质熵和电导率,以获得我们结果的实验可观察到的特征。在很大的限制中,我们评估了描述温度依赖电导的功能的整个交叉。
A Coulomb blockaded $M$-Majorana island coupled to normal metal leads realizes a novel type of Kondo effect where the effective impurity "spin" transforms under the orthogonal group $SO(M)$. The impurity spin stems from the non-local topological ground state degeneracy of the island and thus the effect is known as the topological Kondo effect. We introduce a physically motivated $N$-channel generalization of the topological Kondo model. Starting from the simplest case $N=2$, we conjecture a stable intermediate coupling fixed point and evaluate the resulting low-temperature impurity entropy. The impurity entropy indicates that an emergent Fibonacci anyon can be realized in the $N=2$ model. We also map the case $N=2$, $M=4$ to the conventional 4-channel Kondo model and find the conductance at the intermediate fixed point. By using the perturbative renormalization group, we also analyze the large-$N$ limit, where the fixed point moves to weak coupling. In the isotropic limit, we find an intermediate stable fixed point, which is stable to "exchange" coupling anisotropies, but unstable to channel anisotropy. We evaluate the fixed point impurity entropy and conductance to obtain experimentally observable signatures of our results. In the large-$N$ limit we evaluate the full cross over function describing the temperature-dependent conductance.