论文标题
通过基于随机粒子的变异贝叶斯推断的两阶段多播WiFi传感方案
A Two-stage Multiband WiFi Sensing Scheme via Stochastic Particle-Based Variational Bayesian Inference
论文作者
论文摘要
多次融合通过共同利用来自多个非连续频带的信号来增强WiFi传感。但是,在多波段WiFi传感信号模型中,由于存在高频分量和相失真因子,相关的可能性功能中有许多局部最佳功能,这对高氧化参数估计提出了挑战。为了解决这个问题,我们提出了一个两阶段方案,该方案配备了来自原始模型的不同信号模型,其中使用加权的根部音乐算法进行第一阶段的粗估计,以缩小后续阶段的搜索范围,第二阶段精制估计利用贝叶斯的方法来避免使用不良的次级次级求解。具体而言,我们在精制阶段应用了块随机连续的凸近似方法(SSCA)方法来得出一种新型的基于随机粒子的变化贝叶斯推理(SPVBI)算法。与传统的基于粒子的VBI(PVBI)不同,该VBI仅优化粒子概率并与粒子计数产生指数级别的复杂性,我们更灵活的SPVBI算法优化了每个粒子的位置和概率。此外,它利用块SSCA通过平均迭代来显着提高采样效率,使其适合于高维问题。广泛的模拟证明了我们提出的算法比各种基线方法的优越性。
Multiband fusion enhances WiFi sensing by jointly utilizing signals from multiple non-contiguous frequency bands. However, in the multi-band WiFi sensing signal model, there are many local optimums in the associated likelihood function due to the existence of high frequency component and phase distortion factors, posing challenges for high-accuracy parameter estimation. To address this, we propose a two-stage scheme equipped with different signal models derived from the original model, where the first-stage coarse estimation is performed using a weighted root MUSIC algorithm to narrow down the search range for the subsequent stage, and the second-stage refined estimation utilizes a Bayesian approach to avoid convergence to bad suboptimal solutions. Specifically, we apply the block stochastic successive convex approximation (SSCA) approach to derive a novel stochastic particle-based variational Bayesian inference (SPVBI) algorithm in the refined stage. Unlike conventional particle-based VBI (PVBI) that optimizes only particle probability and incurs exponential per-iteration complexity with particle count, our more flexible SPVBI algorithm optimizes both the position and probability of each particle. Additionally, it utilizes block SSCA to significantly improve sampling efficiency by averaging over iterations, making it suitable for high-dimensional problems. Extensive simulations demonstrate the superiority of our proposed algorithm over various baseline methods.