论文标题

通过QAOA进行投资组合优化的基准测试

Benchmarking the performance of portfolio optimization with QAOA

论文作者

Brandhofer, Sebastian, Braun, Daniel, Dehn, Vanessa, Hellstern, Gerhard, Hüls, Matthias, Ji, Yanjun, Polian, Ilia, Bhatia, Amandeep Singh, Wellens, Thomas

论文摘要

我们使用不同版本的量子近似优化算法(QAOA)进行了详细的投资组合优化研究。对于给定的资产列表,投资组合优化问题被提出为二进制优化,限制了投资组合中包含的资产数量。在足够多的资产的情况下,与经典计算机相比,QAOA被认为是解决此问题(以及类似的组合优化问题)的可能候选者。但是,该算法的实际实施需要仔细考虑几个技术问题,并非所有这些问题都在本文中进行了讨论。本文旨在填补这一空白,从而为读者提供了将QAOA应用于投资组合优化问题(以及类似问题)的有用指南。特别是,我们将讨论各种形式和不同经典算法的几种可能选择,以查找相应的优化参数。查看QAOA在容易出错的NISQ硬件上的应用时,我们还分析了统计抽样错误的影响(由于镜头数量有限),门和读取错误(由于不完善的量子硬件)。最后,我们定义了一个标准,用于区分投资组合优化问题的“轻松”和“硬”实例

We present a detailed study of portfolio optimization using different versions of the quantum approximate optimization algorithm (QAOA). For a given list of assets, the portfolio optimization problem is formulated as quadratic binary optimization constrained on the number of assets contained in the portfolio. QAOA has been suggested as a possible candidate for solving this problem (and similar combinatorial optimization problems) more efficiently than classical computers in the case of a sufficiently large number of assets. However, the practical implementation of this algorithm requires a careful consideration of several technical issues, not all of which are discussed in the present literature. The present article intends to fill this gap and thereby provide the reader with a useful guide for applying QAOA to the portfolio optimization problem (and similar problems). In particular, we will discuss several possible choices of the variational form and of different classical algorithms for finding the corresponding optimized parameters. Viewing at the application of QAOA on error-prone NISQ hardware, we also analyze the influence of statistical sampling errors (due to a finite number of shots) and gate and readout errors (due to imperfect quantum hardware). Finally, we define a criterion for distinguishing between "easy" and "hard" instances of the portfolio optimization problem

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源