论文标题
拓扑结节环半金属中的淬灭动力和缩放定律
Quench dynamics and scaling laws in topological nodal loop semimetals
论文作者
论文摘要
我们采用淬灭动态作为探测拓扑相变的不同通用类别类别的有效工具。具体而言,我们研究了一个模型,其中包括类似狄拉克的和节点环的关键。检查拓扑缺陷密度的千里布尔·泽尔克(Kibble-Zurek)缩放尺度,我们发现在存在扩展的节点环间隙闭合的情况下,缩放指数会降低。为了通过多个智力点进行淬火,我们还揭示了两组关键指数之间的路径依赖性交叉。 Bloch状态断层扫描最终揭示了突然淬火的缺陷轨迹的其他差异。虽然狄拉克过渡允许在特定初始条件下进行静态轨迹,但我们发现基本的节点环通常导致相关时间依赖的轨迹。在存在淋巴结环的情况下,我们通常发现,在产生拓扑缺陷的动量模式与发生动态量子相变的位置之间的不匹配。我们还发现了该对应关系完全分解的显着例外。
We employ quench dynamics as an effective tool to probe different universality classes of topological phase transitions. Specifically, we study a model encompassing both Dirac-like and nodal loop criticalities. Examining the Kibble-Zurek scaling of topological defect density, we discover that the scaling exponent is reduced in the presence of extended nodal loop gap closures. For a quench through a multicritical point, we also unveil a path-dependent crossover between two sets of critical exponents. Bloch state tomography finally reveals additional differences in the defect trajectories for sudden quenches. While the Dirac transition permits a static trajectory under specific initial conditions, we find that the underlying nodal loop leads to complex time-dependent trajectories in general. In the presence of a nodal loop, we find, generically, a mismatch between the momentum modes where topological defects are generated and where dynamical quantum phase transitions occur. We also find notable exceptions where this correspondence breaks down completely.