论文标题
一种可转移的建议方法,用于选择化学发现中最佳密度功能近似值
A Transferable Recommender Approach for Selecting the Best Density Functional Approximations in Chemical Discovery
论文作者
论文摘要
由于其成本准确性的权衡,与更苛刻但准确的相关波函数理论相比,近似密度功能理论(DFT)已成为必不可少的。然而,迄今为止,尚未确定具有通用精度的单个密度函数近似(DFA),从而导致DFT产生的数据质量的不确定性。通过电子密度拟合和转移学习,我们构建了DFA建议剂,该DFA选择以系统特异性方式相对于黄金标准但过滤式的耦合群集理论,以最低的预期误差。我们在垂直旋转裂缝能量评估中为具有挑战性的过渡金属配合物提供了这种推荐方法。我们的推荐人可以预测表现最佳的DFA,并产生出色的精度(约2 kcal/mol),可用于化学发现,表现优于单个传递学习模型,并且在一组48个DFA中的单个最佳功能。我们证明了DFA推荐剂对具有独特化学的实验合成化合物的可传递性。
Approximate density functional theory (DFT) has become indispensable owing to its cost-accuracy trade-off in comparison to more computationally demanding but accurate correlated wavefunction theory. To date, however, no single density functional approximation (DFA) with universal accuracy has been identified, leading to uncertainty in the quality of data generated from DFT. With electron density fitting and transfer learning, we build a DFA recommender that selects the DFA with the lowest expected error with respect to gold standard but cost-prohibitive coupled cluster theory in a system-specific manner. We demonstrate this recommender approach on vertical spin-splitting energy evaluation for challenging transition metal complexes. Our recommender predicts top-performing DFAs and yields excellent accuracy (ca. 2 kcal/mol) for chemical discovery, outperforming both individual transfer learning models and the single best functional in a set of 48 DFAs. We demonstrate the transferability of the DFA recommender to experimentally synthesized compounds with distinct chemistry.