论文标题
一些四重奏和六二聚体的家庭的实用解决方案
Practical solution of some families of quartic and sextic diophantine hyperelliptic equations
论文作者
论文摘要
使用基本数理论,我们研究了以下形式的理性整数,$ y^2 =(x+a)(x+a)(x+a+k)(x+a+k)(x+b)(x+b+k)$,$ y^2 = c^2x^4+ax^4+ax^2+b $ and $ y^2 = y^2 =(x^2-1)(x^2-1)(x^2-2- $ wes^2-^2)通过$ f(x)的判别物的分隔线,$ y^2 = f(x)$。
Using elementary number theory we study Diophantine equations over the rational integers of the following form, $y^2=(x+a)(x+a+k)(x+b)(x+b+k)$, $y^2=c^2x^4+ax^2+b$ and $y^2=(x^2-1)(x^2-α^2)(x^2-(α+1)^2).$ We express their integer solutions by means of the divisors of the discriminant of $f(x),$ where $y^2=f(x)$.