论文标题

针对部分微分方程的量子风格的变分算法:应用于金融衍生品定价

Quantum-inspired variational algorithms for partial differential equations: Application to financial derivative pricing

论文作者

Zhao, Tianchen, Sun, Chuhao, Cohen, Asaf, Stokes, James, Veerapaneni, Shravan

论文摘要

变异量子蒙特卡洛(VMC)与神经网络量子状态结合使用,在特定类别的部分微分方程(PDES)中遇到的差异性象征性的攻击角度具有新颖的攻击角度;也就是说,相关的时间依赖于时间依赖的schrödinger方程。在本文中,我们提出了适用于任意时间依赖性PDE的VMC的简单概括,展示了多项资产黑choles PDE中的技术,用于定价欧洲选项,包括许多相关的基础资产。

Variational quantum Monte Carlo (VMC) combined with neural-network quantum states offers a novel angle of attack on the curse-of-dimensionality encountered in a particular class of partial differential equations (PDEs); namely, the real- and imaginary time-dependent Schrödinger equation. In this paper, we present a simple generalization of VMC applicable to arbitrary time-dependent PDEs, showcasing the technique in the multi-asset Black-Scholes PDE for pricing European options contingent on many correlated underlying assets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源