论文标题

使用多任务学习的多种情​​感描述估计的合奏方法

An Ensemble Approach for Multiple Emotion Descriptors Estimation Using Multi-task Learning

论文作者

Haider, Irfan, Tran, Minh-Trieu, Kim, Soo-Hyung, Yang, Hyung-Jeong, Lee, Guee-Sang

论文摘要

本文说明了我们对第四个情感行为分析(ABAW)竞争的提交方法。该方法用于多任务学习挑战。我们不使用面部信息,而是从包含面部和面部周围上下文的提供的数据集中使用完整信息。我们利用InceptionNet V3模型提取深度特征,然后应用了注意机制来完善特征。之后,我们将这些功能放入变压器块和多层感知器网络中,以获得最终的多种情感。我们的模型预测唤醒和价,对情绪表达进行了分类,并同时估算动作单位。提出的系统在MTL挑战验证数据集上实现了0.917的性能。

This paper illustrates our submission method to the fourth Affective Behavior Analysis in-the-Wild (ABAW) Competition. The method is used for the Multi-Task Learning Challenge. Instead of using only face information, we employ full information from a provided dataset containing face and the context around the face. We utilized the InceptionNet V3 model to extract deep features then we applied the attention mechanism to refine the features. After that, we put those features into the transformer block and multi-layer perceptron networks to get the final multiple kinds of emotion. Our model predicts arousal and valence, classifies the emotional expression and estimates the action units simultaneously. The proposed system achieves the performance of 0.917 on the MTL Challenge validation dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源