论文标题
第一灯和回报时期模拟(耀斑)vi:星系的颜色演变$ z = 5-15 $
First Light And Reionisation Epoch Simulations (FLARES) VI: The colour evolution of galaxies $z=5-15$
论文作者
论文摘要
詹姆斯·韦伯(James Webb)太空望远镜凭借其精致的灵敏度,波长覆盖范围以及空间和光谱分辨率,有望彻底改变我们对遥远,高红色($ z> 5 $)宇宙的看法。虽然Webb的光谱观察结果将对该领域进行变化,但光度观测值在识别远处的对象和提供比单独光谱可访问的更全面样本方面起着关键作用。除了识别对象外,光度观测值还可以用于推断物理特性,因此可用于约束星系形成模型。然而,从宽带光度观测值中推断出物理特性,特别是在没有光谱红移的情况下,通常具有较大的不确定性。通过开发用于正向建模模拟的新工具,现在通常可以预测观察量,从而直接与观测值进行比较。考虑到这一点,在这项工作中,我们使用耀斑对星系的颜色演化进行了预测:第一光和回报时代仿真宇宙流体动力学模拟套件。我们预测复杂的演化,主要由通过单个带的强轴向线发射驱动。这些预测与Hubble和Spitzer的现有限制以及Webb的一些结果非常吻合。我们还将我们的预测与文献中的其他模型进行了对比:虽然一般趋势相似,但我们发现了关键差异,尤其是在与强静脉线发射相关的特征强度上。这表明仅光度观测值应提供有用的不同模型之间的区分功率。
With its exquisite sensitivity, wavelength coverage, and spatial and spectral resolution, the James Webb Space Telescope is poised to revolutionise our view of the distant, high-redshift ($z>5$) Universe. While Webb's spectroscopic observations will be transformative for the field, photometric observations play a key role in identifying distant objects and providing more comprehensive samples than accessible to spectroscopy alone. In addition to identifying objects, photometric observations can also be used to infer physical properties and thus be used to constrain galaxy formation models. However, inferred physical properties from broadband photometric observations, particularly in the absence of spectroscopic redshifts, often have large uncertainties. With the development of new tools for forward modelling simulations it is now routinely possible to predict observational quantities, enabling a direct comparison with observations. With this in mind, in this work, we make predictions for the colour evolution of galaxies at $z=5-15$ using the FLARES: First Light And Reionisation Epoch Simulations cosmological hydrodynamical simulation suite. We predict a complex evolution, driven predominantly by strong nebular line emission passing through individual bands. These predictions are in good agreement with existing constraints from Hubble and Spitzer as well as some of the first results from Webb. We also contrast our predictions with other models in the literature: while the general trends are similar we find key differences, particularly in the strength of features associated with strong nebular line emission. This suggests photometric observations alone should provide useful discriminating power between different models.