论文标题
Keller-Segel方程的有限有限元近似
Bound-preserving finite element approximations of the Keller-Segel equations
论文作者
论文摘要
本文旨在开发凯勒(Keller)的数值近似值 - 在离散级别模仿下限和连续问题的能量定律的鉴定方程。我们为两个未知数求解这些方程:有机体(或细胞)密度,这是一个正变量,而趋化剂密度,这是一个非负变量。我们提出了两种算法,这些算法结合了稳定的有限元方法和半平均时间集成。该稳定由非线性人工扩散组成,该扩散采用了图形拉普拉斯操作员和局部极值的冲击检测器。结果,两种算法都是非线性的。任何算法都可以生成细胞和化学吸引剂数值密度,从而满足下限。但是,第一个算法需要在空间和时间离散参数之间进行适当的约束,而第二个算法则不需要。我们设计后者以获得急性网眼的离散能量法。我们报告了一些数值实验,以验证爆炸和非爆破现象的理论结果。在爆炸设置中,我们确定了将$ l^\ infty(ω)$ - norm-norm与$ l^1(ω)$ - 规范限制在宏观元素上支持奇异性的生长的现象。
This paper aims to develop numerical approximations of the Keller--Segel equations that mimic at the discrete level the lower bounds and the energy law of the continuous problem. We solve these equations for two unknowns: the organism (or cell) density, which is a positive variable, and the chemoattractant density, which is a nonnegative variable. We propose two algorithms, which combine a stabilized finite element method and a semi-implicit time integration. The stabilization consists of a nonlinear artificial diffusion that employs a graph-Laplacian operator and a shock detector that localizes local extrema. As a result, both algorithms turn out to be nonlinear.Both algorithms can generate cell and chemoattractant numerical densities fulfilling lower bounds. However, the first algorithm requires a suitable constraint between the space and time discrete parameters, whereas the second one does not. We design the latter to attain a discrete energy law on acute meshes. We report some numerical experiments to validate the theoretical results on blowup and non-blowup phenomena. In the blowup setting, we identify a \textit{locking} phenomenon that relates the $L^\infty(Ω)$-norm to the $L^1(Ω)$-norm limiting the growth of the singularity when supported on a macroelement.