论文标题
弹性材料中的晶界应力
Grain boundary stresses in elastic materials
论文作者
论文摘要
对于一般的弹性多晶材料,提出了一个简单的晶间正常应力分析模型,该材料具有任意形状和随机定向的晶粒在均匀载荷下。该模型为局部晶粒 - 边界正常应力和相应的不确定性提供了代数表达,作为晶型型的函数,其倾向在外部载荷和材料弹性参数方向上。在任何局部损害建模方法中,例如预测结构材料中的晶间应力腐蚀裂纹,晶粒式滑动或疲劳 - 裂缝 - 引入地点,对晶间正常应力的了解是必要的先决条件。 该模型以扰动方式得出,从简单设置的精确解决方案开始,然后依次完善其以说明现实多晶材料的高阶复杂性。在最简单的情况下,将双晶模型嵌入到各向同性弹性介质中,并在单轴加载条件下求解,假设在不同的长度尺度上具有1D REUSS和VOIGT近似值。在最后的迭代中,晶界成为3D结构的一部分,该结构由五个具有任意晶粒数量的1D链组成,并被各向异性弹性培养基包围。可以为任意均匀的载荷,任何晶粒型类型和弹性多晶材料的选择来求解本构方程。在每次迭代中,均得出了局部晶粒 - 结合正常应力的代数表达式以及相应的统计分布,并根据不同Voronoi微结构的有限元仿真结果进行系统验证和验证其精度。
A simple analytical model of intergranular normal stresses is proposed for a general elastic polycrystalline material with arbitrary shaped and randomly oriented grains under uniform loading. The model provides algebraic expressions for the local grain-boundary-normal stress and the corresponding uncertainties, as a function of the grain-boundary type, its inclination with respect to the direction of external loading and material-elasticity parameters. The knowledge of intergranular normal stresses is a necessary prerequisite in any local damage modeling approach, e.g., to predict the intergranular stress-corrosion cracking, grain-boundary sliding or fatigue-crack-initiation sites in structural materials. The model is derived in a perturbative manner, starting with the exact solution of a simple setup and later successively refining it to account for higher order complexities of realistic polycrystalline materials. In the simplest scenario, a bicrystal model is embedded in an isotropic elastic medium and solved for uniaxial loading conditions, assuming 1D Reuss and Voigt approximations on different length scales. In the final iteration, the grain boundary becomes a part of a 3D structure consisting of five 1D chains with arbitrary number of grains and surrounded by an anisotropic elastic medium. Constitutive equations can be solved for arbitrary uniform loading, for any grain-boundary type and choice of elastic polycrystalline material. At each iteration, the algebraic expressions for the local grain-boundary-normal stress, along with the corresponding statistical distributions, are derived and their accuracy systematically verified and validated against the finite element simulation results of different Voronoi microstructures.