论文标题

小鼠对的完全归一化

Full normalization for mouse pairs

论文作者

Siskind, Benjamin, Steel, John

论文摘要

我们开发了元识别树的理论,即基本“模型”本身就是普通迭代树的迭代树。我们证明了与普通迭代策略平行的元识别策略的比较定理,并使用它来证明鼠标对的迭代策略成分在弱树嵌入下凝结自身。这些构成迭代树之间的一类嵌入,其明显大于小鼠对定义中提到的嵌入类别。然后,我们使用鼠标对的这种非常强大的船体冷凝特性表明,鼠标对的每个迭代都是通过单个$λ$ - tight,正常迭代树的迭代,并且相关的尾巴策略与迭代的方式无关。

We develop the theory of meta-iteration trees, that is, iteration trees whose base "model" is itself an ordinary iteration tree. We prove a comparison theorem for meta-iteration strategies parallel to the one for ordinary iteration strategies, and use it to show that the iteration strategy component of a mouse pair condenses to itself under weak tree embeddings. These constitute a class of embeddings between iteration trees that is significantly larger than the class of embeddings mentioned in the definition of mouse pair. We then use this very strong hull condensation property of mouse pairs to show that every iterate of a mouse pair is an iterate via a single $λ$-tight, normal iteration tree, and that the associated tail strategies are independent of how the iterate was reached.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源