论文标题

在随机正常矩阵的硬边缘计数磁盘计数统计的指数矩

Exponential moments for disk counting statistics at the hard edge of random normal matrices

论文作者

Ameur, Yacin, Charlier, Christophe, Cronvall, Joakim, Lenells, Jonatan

论文摘要

我们考虑在硬壁的存在下,考虑模型Mittag-Leffler集合的磁盘计数统计量的多变量力矩生成函数。令$ n $为积分数。我们专注于两个制度:(a)``硬边缘'',所有磁盘边界都处于订单$ \ frac {1} {n} $的距离,以及(b)``semi-hard Edge egimime''所有磁盘边界均处于$ \ freac $ \ frac n HERD} $ n} $ n的距离的距离。作为$ n \ to + \ infty $,我们证明生成函数的瞬间享受表单\ begin {align*}&\ exp \ bigG(c_ {1} n + c_ {2} \ ln N + c_ {1} n + c_ {1} \ Mathcal {o}(n^{ - \ frac {3} {5}})\ bigg),&&&\ mbox {对于硬边},\\ \&\ exp \ exp \ big(c_ {1} n + c_ {2} n + c_ {2} {2} {2} {2} {2} \ sqrt {n} \ hspace {3 + \ frac {c_ {4}} {\ sqrt {n}} + \ \ \ \ \ \ \ \ \ \ \ \} \ bigG(\ frac {(\ ln n)^{4}}} {n}} {n} \ bigG)\ bigG)\ bigG) \ end {align*}在两种情况下,我们都会确定常数$ c_ {1},\ dots,c_ {4} $显式。我们还为磁盘计数函数的所有关节累积物提供精确的渐近公式,并建立了几个中心限制定理。 Surprisingly, and in contrast to the ``bulk", ``soft edge" and ``semi-hard edge" regimes, the second and higher order cumulants of the disk counting function in the ``hard edge" regime are proportional to $n$ and not to $\sqrt{n}$.

We consider the multivariate moment generating function of the disk counting statistics of a model Mittag-Leffler ensemble in the presence of a hard wall. Let $n$ be the number of points. We focus on two regimes: (a) the ``hard edge regime" where all disk boundaries are at a distance of order $\frac{1}{n}$ from the hard wall, and (b) the ``semi-hard edge regime" where all disk boundaries are at a distance of order $\frac{1}{\sqrt{n}}$ from the hard wall. As $n \to + \infty$, we prove that the moment generating function enjoys asymptotics of the form \begin{align*} & \exp \bigg(C_{1}n + C_{2}\ln n + C_{3} + \frac{C_{4}}{\sqrt{n}} + \mathcal{O}(n^{-\frac{3}{5}})\bigg), & & \mbox{for the hard edge}, \\ & \exp \bigg(C_{1}n + C_{2}\sqrt{n} \hspace{0.12cm} + C_{3} + \frac{C_{4}}{\sqrt{n}} + \mathcal{O}\bigg(\frac{(\ln n)^{4}}{n}\bigg)\bigg), & & \mbox{for the semi-hard edge}. \end{align*} In both cases, we determine the constants $C_{1},\dots,C_{4}$ explicitly. We also derive precise asymptotic formulas for all joint cumulants of the disk counting function, and establish several central limit theorems. Surprisingly, and in contrast to the ``bulk", ``soft edge" and ``semi-hard edge" regimes, the second and higher order cumulants of the disk counting function in the ``hard edge" regime are proportional to $n$ and not to $\sqrt{n}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源