论文标题
部分可观测时空混沌系统的无模型预测
Domain Generalization for Activity Recognition via Adaptive Feature Fusion
论文作者
论文摘要
人类活动认可需要努力使用培训数据集建立可推广的模型,以期在测试数据集中取得良好的性能。但是,在实际应用中,由于各种原因,例如不同的身体形状,表演方式和习惯,培训和测试数据集可能具有完全不同的分布,从而损害了模型的泛化性能。尽管现有域的适应方法可以减少这种分布差距,但他们通常认为可以在训练阶段访问测试数据,这是不现实的。在本文中,我们考虑了一个更加实用,更具挑战性的场景:域将来的活动识别(DGAR),其中在培训期间无法访问测试数据集\ emph {无法访问。为此,我们提出了\ emph {用于活动识别〜(affar)}的自适应特征融合,这是一种域的泛化方法,该方法学会融合域,不变和特定于域的表示,以提高模型的泛化性能。阿夫(Affar)采取了两全其美的最佳状态,在这种世界上,域不变的表示增强了跨域和特定于域的表示跨每个域的模型歧视能力的可传递性。三个公共HAR数据集的大量实验显示出其有效性。此外,我们将其应用于实际应用,即诊断儿童注意力缺陷多动障碍〜(ADHD),这也证明了我们方法的优越性。
Human activity recognition requires the efforts to build a generalizable model using the training datasets with the hope to achieve good performance in test datasets. However, in real applications, the training and testing datasets may have totally different distributions due to various reasons such as different body shapes, acting styles, and habits, damaging the model's generalization performance. While such a distribution gap can be reduced by existing domain adaptation approaches, they typically assume that the test data can be accessed in the training stage, which is not realistic. In this paper, we consider a more practical and challenging scenario: domain-generalized activity recognition (DGAR) where the test dataset \emph{cannot} be accessed during training. To this end, we propose \emph{Adaptive Feature Fusion for Activity Recognition~(AFFAR)}, a domain generalization approach that learns to fuse the domain-invariant and domain-specific representations to improve the model's generalization performance. AFFAR takes the best of both worlds where domain-invariant representations enhance the transferability across domains and domain-specific representations leverage the model discrimination power from each domain. Extensive experiments on three public HAR datasets show its effectiveness. Furthermore, we apply AFFAR to a real application, i.e., the diagnosis of Children's Attention Deficit Hyperactivity Disorder~(ADHD), which also demonstrates the superiority of our approach.