论文标题
爱因斯坦 - 杨米尔斯理论的卡洛利亚极限的渐近结构在四个时空维度
Asymptotic structure of Carrollian limits of Einstein-Yang-Mills theory in four spacetime dimensions
论文作者
论文摘要
在本文中,完成了三件事。首先,我们从代数的观点研究了与爱因斯坦重力的电和磁性carrollian限制的Carroll代数的无限BMS样延伸。在这项研究的过程中,我们通过“ Carroll-Galileo二元性”展示了Galilean代数及其中央扩展的Bargmann代数的新型无限二维BMS样延伸。其次,我们考虑了纯爱因斯坦理论的电carrollian极限,并表明比仅遵循爱因斯坦边界条件极限的柔性边界实际上是一致的。这些边界条件会导致较大的渐近对称代数,该代数涉及空间超译,具体取决于角度的三个函数(而不是一个)。第三,我们转向耦合的爱因斯坦 - 杨米尔斯系统的Carrollian极限。在Yang-Mills田的电气Carrollian限制中发现了量规代数的无限尺寸颜色增强,该电场允许空间无穷大的角度依赖角度依赖角度的Yang-Mills转换,在服用Carrollian Electric限制之前,在Einstein-Yang-Mills案例中不可用。这种增强在磁性极限中不会发生。
In this paper, three things are done. First, we study from an algebraic point of view the infinite-dimensional BMS-like extensions of the Carroll algebra relevant to the asymptotic structure of the electric and magnetic Carrollian limits of Einstein gravity. In the course of this study we exhibit by "Carroll-Galileo duality" a new infinite-dimensional BMS-like extension of the Galilean algebra and of its centrally extended Bargmann algebra. Second, we consider the electric Carrollian limit of the pure Einstein theory and indicate that more flexible boundary conditions than the ones that follow from just taking the limit of the Einsteinian boundary conditions are actually consistent. These boundary conditions lead to a bigger asymptotic symmetry algebra that involves spatial supertranslations depending on three functions of the angles (instead of one). Third, we turn to the Carrollian limit of the coupled Einstein-Yang-Mills system. An infinite-dimensional color enhancement of the gauge algebra is found in the electric Carrollian limit of the Yang-Mills field, which allows angle-dependent Yang-Mills transformations at spatial infinity, not available in the Einstein-Yang-Mills case prior to taking the Carrollian electric limit. This enhancement does not occur in the magnetic limit.