论文标题
通过双路径图完成学习对象放置
Learning Object Placement via Dual-path Graph Completion
论文作者
论文摘要
对象放置旨在将前景对象放在具有合适位置和大小的背景图像上。在这项工作中,我们将对象放置视为图形完成问题,并提出了一个新的图形完成模块(GCM)。背景场景由一个图形表示,在不同的空间位置具有多个节点,并带有各种接收场。前景对象被编码为应插入该图中合理位置的特殊节点。我们还在GCM的结构上设计了一个双路径框架,以完全利用带注释的复合图像。通过在OPA数据集上进行广泛的实验,我们的方法证明,在产生合理的对象放置而不会损失多样性的情况下,明显优于现有的方法。
Object placement aims to place a foreground object over a background image with a suitable location and size. In this work, we treat object placement as a graph completion problem and propose a novel graph completion module (GCM). The background scene is represented by a graph with multiple nodes at different spatial locations with various receptive fields. The foreground object is encoded as a special node that should be inserted at a reasonable place in this graph. We also design a dual-path framework upon the structure of GCM to fully exploit annotated composite images. With extensive experiments on OPA dataset, our method proves to significantly outperform existing methods in generating plausible object placement without loss of diversity.