论文标题
Marior:删除边距和迭代内容纠正,用于野外文档露水
Marior: Margin Removal and Iterative Content Rectification for Document Dewarping in the Wild
论文作者
论文摘要
摄像头捕获的文档图像通常遭受透视和几何形状变形的影响。在考虑视觉不良美学和OCR系统性能不断恶化时,纠正它们具有很大的价值。最近的基于学习的方法将重点关注精确的文档图像。但是,这可能不足以克服实际挑战,包括具有大边缘区域或没有边距的文档图像。由于这种不切实际,用户在遇到大边缘区域时很难准确地裁剪文件。同时,没有边距的脱瓦图像仍然是一个无法克服的问题。据我们所知,仍然没有完整有效的管道来纠正野外文档图像。为了解决这个问题,我们提出了一种称为Marior的新颖方法(删除边缘和\迭代内容纠正)。马里奥(Marior)遵循一种渐进策略,以粗到精细的方式迭代地改善脱水质量和可读性。具体而言,我们将管道分为两个模块:边缘去除模块(MRM)和迭代内容整流模块(ICRM)。首先,我们预测输入图像的分割面膜以删除边缘,从而获得初步结果。然后,我们通过产生密集的位移流以实现内容感知的整流来进一步完善图像。我们会自适应地确定改进迭代的数量。实验证明了我们方法在公共基准测试中的最新性能。资源可在https://github.com/zzzhang-jx/marior上获得,以进行进一步比较。
Camera-captured document images usually suffer from perspective and geometric deformations. It is of great value to rectify them when considering poor visual aesthetics and the deteriorated performance of OCR systems. Recent learning-based methods intensively focus on the accurately cropped document image. However, this might not be sufficient for overcoming practical challenges, including document images either with large marginal regions or without margins. Due to this impracticality, users struggle to crop documents precisely when they encounter large marginal regions. Simultaneously, dewarping images without margins is still an insurmountable problem. To the best of our knowledge, there is still no complete and effective pipeline for rectifying document images in the wild. To address this issue, we propose a novel approach called Marior (Margin Removal and \Iterative Content Rectification). Marior follows a progressive strategy to iteratively improve the dewarping quality and readability in a coarse-to-fine manner. Specifically, we divide the pipeline into two modules: margin removal module (MRM) and iterative content rectification module (ICRM). First, we predict the segmentation mask of the input image to remove the margin, thereby obtaining a preliminary result. Then we refine the image further by producing dense displacement flows to achieve content-aware rectification. We determine the number of refinement iterations adaptively. Experiments demonstrate the state-of-the-art performance of our method on public benchmarks. The resources are available at https://github.com/ZZZHANG-jx/Marior for further comparison.