论文标题
在手机上使用双摄像头融合的脸部去皮
Face Deblurring using Dual Camera Fusion on Mobile Phones
论文作者
论文摘要
快速移动受试者的运动模糊是摄影中的一个长期问题,并且由于光收集效率有限,尤其是在弱光条件下,在手机上非常常见。虽然近年来我们目睹了图像脱毛的巨大进展,但大多数方法都需要显着的计算能力,并且在处理高分辨率照片的情况下具有严重的本地动作。为此,我们根据手机的双摄像头融合技术开发了一种新颖的面部脱毛系统。该系统检测到主题运动以动态启用参考摄像头,例如,最近在高级手机上通常可用的Ultrawide Angle摄像头,并捕获带有更快快门设置的辅助照片。虽然主镜头是低噪音但模糊的,但参考镜头却很锋利,但嘈杂。我们学习ML模型以对齐和融合这两次镜头,并在没有运动模糊的情况下输出清晰的照片。我们的算法在Google Pixel 6上有效运行,每次拍摄需要463毫秒的开销。我们的实验证明了系统对替代单像,多帧,面部特异性和视频脱张算法以及商业产品的优势和鲁棒性。据我们所知,我们的工作是第一个用于面部运动去膨胀的移动解决方案,在各种运动和照明条件下,在数千个图像中可靠地工作。
Motion blur of fast-moving subjects is a longstanding problem in photography and very common on mobile phones due to limited light collection efficiency, particularly in low-light conditions. While we have witnessed great progress in image deblurring in recent years, most methods require significant computational power and have limitations in processing high-resolution photos with severe local motions. To this end, we develop a novel face deblurring system based on the dual camera fusion technique for mobile phones. The system detects subject motion to dynamically enable a reference camera, e.g., ultrawide angle camera commonly available on recent premium phones, and captures an auxiliary photo with faster shutter settings. While the main shot is low noise but blurry, the reference shot is sharp but noisy. We learn ML models to align and fuse these two shots and output a clear photo without motion blur. Our algorithm runs efficiently on Google Pixel 6, which takes 463 ms overhead per shot. Our experiments demonstrate the advantage and robustness of our system against alternative single-image, multi-frame, face-specific, and video deblurring algorithms as well as commercial products. To the best of our knowledge, our work is the first mobile solution for face motion deblurring that works reliably and robustly over thousands of images in diverse motion and lighting conditions.