论文标题

一种新型分散的逆变器控制算法,用于最小化和LVRT改进

A Novel Decentralized Inverter Control Algorithm for Loss Minimization and LVRT Improvement

论文作者

Murzakhanov, Ilgiz, Vishwanath, Gururaj Mirle, Kasi, Vemalaiah, Prashal, Garima, Chatzivasileiadis, Spyros, Padhy, Narayana Prasad

论文摘要

调节转换器相互连接的反应性功率注入以最大程度减少损失的算法可能会损害转换器的断层直通能力。这对于分销网格的可靠操作可能至关重要,因为它们可能会丢失有价值的资源来支持网格电压。本文探讨了两种新颖的损失最小化算法如何在正常运行期间高度减少系统损失,并保持连接以支撑故障期间的电压。我们提出的算法是分散且无模型的:它们不需要通信,也不需要对网格拓扑或转换器的网格位置的了解。他们使用局部信息控制反应能力注入以最大程度地减少系统损失。在本文中,我们扩展了这些算法,以确保转换器的(LVRT)功能(LVRT)的低电压乘坐,并将它们与最先进的小波CNN-LSTM Res预测方法集成在一起,从而提高其性能。我们对实时数字仿真(RTDS)平台进行了广泛的模拟,我们证明我们建议的算法可以实现功率损耗的大幅下降,同时仍符合LVRT的网格代码,使其适合于整个分配系统的实现。

Algorithms that adjust the reactive power injection of converter-connected RES to minimize losses may compromise the converters' fault-ride-through capability. This can become crucial for the reliable operation of the distribution grids, as they could lose valuable resources to support grid voltage at the time they need them the most. This paper explores how two novel loss-minimizing algorithms can both achieve high reduction of the system losses during normal operation and remain connected to support the voltage during faults. The algorithms we propose are decentralized and model-free: they require no communication and no knowledge of the grid topology or the grid location of the converters. Using local information, they control the reactive power injection to minimize the system losses. In this paper, we extend these algorithms to ensure the low voltage ride through (LVRT) capability of the converters, and we integrate them with state-of-the-art Wavelet-CNN-LSTM RES forecasting methods that enhance their performance. We perform extensive simulations on the real-time digital simulation (RTDS) platform, where we demonstrate that the algorithms we propose can achieve a substantial decrease in power losses while remaining compliant with the grid codes for LVRT makes them suitable for the implementation across the distribution system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源