论文标题

AMS-NET:自适应多尺度稀疏神经网络,具有可解释的基础扩展,用于多相流问题

AMS-Net: Adaptive Multiscale Sparse Neural Network with Interpretable Basis Expansion for Multiphase Flow Problems

论文作者

Wang, Yating, Leung, Wing Tat, Lin, Guang

论文摘要

在这项工作中,我们提出了一种自适应稀疏学习算法,可以应用于学习物理过程并获得较大的快照空间的溶液的稀疏表示。假设有一类丰富的预先计算基础函数可以用来近似关注数量。然后,我们设计了一个神经网络体系结构,以学习由这些基础功能跨越的空间中的解决方案系数。基本函数的信息已包含在损耗函数中,这最小化了在多个时间步长下缩小的减少订单解决方案和参考解决方案之间的差异。该网络包含多个子模块,并且可以同时学习不同时间步骤的解决方案。我们在学习框架中提出了一些策略,以确定重要的自由度。为了找到稀疏的溶液表示,应用软阈值操作员来强制神经网络的输出系数向量的稀疏性。为了避免过度简化并丰富近似空间,可以通过贪婪的算法将一些自由度添加回系统。在这两种情况下,即删除和添加自由度,相应的网络连接都由从网络输出获得的解决方案系数的大小来修剪或重新激导。提出的自适应学习过程应用于某些玩具案例示例,以证明它可以实现良好的基础选择和准确的近似。对两阶段多尺度流问题进行了更多的数值测试,以显示复杂应用程序所提出的方法的能力和解释性。

In this work, we propose an adaptive sparse learning algorithm that can be applied to learn the physical processes and obtain a sparse representation of the solution given a large snapshot space. Assume that there is a rich class of precomputed basis functions that can be used to approximate the quantity of interest. We then design a neural network architecture to learn the coefficients of solutions in the spaces which are spanned by these basis functions. The information of the basis functions are incorporated in the loss function, which minimizes the differences between the downscaled reduced order solutions and reference solutions at multiple time steps. The network contains multiple submodules and the solutions at different time steps can be learned simultaneously. We propose some strategies in the learning framework to identify important degrees of freedom. To find a sparse solution representation, a soft thresholding operator is applied to enforce the sparsity of the output coefficient vectors of the neural network. To avoid over-simplification and enrich the approximation space, some degrees of freedom can be added back to the system through a greedy algorithm. In both scenarios, that is, removing and adding degrees of freedom, the corresponding network connections are pruned or reactivated guided by the magnitude of the solution coefficients obtained from the network outputs. The proposed adaptive learning process is applied to some toy case examples to demonstrate that it can achieve a good basis selection and accurate approximation. More numerical tests are performed on two-phase multiscale flow problems to show the capability and interpretability of the proposed method on complicated applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源