论文标题
SGAT:Simplicial Graph注意网络
SGAT: Simplicial Graph Attention Network
论文作者
论文摘要
异质图具有多个节点和边缘类型,并且在语义上比同质图更丰富。为了学习这种复杂的语义,许多用于异质图的图形神经网络方法使用Metapaths捕获节点之间的多跳相互作用。通常,非目标节点的功能未包含在学习过程中。但是,可以存在涉及多个节点或边缘的非线性高阶相互作用。在本文中,我们提出了简单的图形注意网络(SGAT),这是一种简单的复杂方法,可以通过将非目标节点的特征放在简单上来表示这种高阶相互作用。然后,我们使用注意机制和上邻接来生成表示。我们从经验上证明了方法在异质图数据集上使用节点分类任务的方法的功效,并进一步显示了SGAT通过使用随机节点特征来提取结构信息的能力。数值实验表明,SGAT的性能优于其他当前最新的异质图学习方法。
Heterogeneous graphs have multiple node and edge types and are semantically richer than homogeneous graphs. To learn such complex semantics, many graph neural network approaches for heterogeneous graphs use metapaths to capture multi-hop interactions between nodes. Typically, features from non-target nodes are not incorporated into the learning procedure. However, there can be nonlinear, high-order interactions involving multiple nodes or edges. In this paper, we present Simplicial Graph Attention Network (SGAT), a simplicial complex approach to represent such high-order interactions by placing features from non-target nodes on the simplices. We then use attention mechanisms and upper adjacencies to generate representations. We empirically demonstrate the efficacy of our approach with node classification tasks on heterogeneous graph datasets and further show SGAT's ability in extracting structural information by employing random node features. Numerical experiments indicate that SGAT performs better than other current state-of-the-art heterogeneous graph learning methods.