论文标题

与同时的空间和颞障碍接触过程

Contact process with simultaneous spatial and temporal disorder

论文作者

Ye, Xuecheng, Vojta, Thomas

论文摘要

我们研究了在空间和时间随机疾病的综合影响下,研究一维接触过程中的吸收状态相变。我们专注于空间和时间疾病脱糖的情况。以流行病的语言为助长,这意味着某些空间区域在任何时候都比其他空间更有利,并且某些时间段比独立于空间位置的其他空间更有利。我们采用广义的哈里斯标准来讨论针对这种疾病的定向渗透普遍性类别的稳定性。然后,我们进行大规模的蒙特卡洛模拟,以详细分析临界行为。我们还讨论了伴随非平衡期跃迁的奇异性奇异性如何受这两种疾病的同时存在。

We study the absorbing-state phase transition in the one-dimensional contact process under the combined influence of spatial and temporal random disorders. We focus on situations in which the spatial and temporal disorders decouple. Couched in the language of epidemic spreading, this means that some spatial regions are, at all times, more favorable than others for infections, and some time periods are more favorable than others independent of spatial location. We employ a generalized Harris criterion to discuss the stability of the directed percolation universality class against such disorder. We then perform large-scale Monte Carlo simulations to analyze the critical behavior in detail. We also discuss how the Griffiths singularities that accompany the nonequilibrium phase transition are affected by the simultaneous presence of both disorders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源