论文标题

联合图机器学习:概念,技术和应用的调查

Federated Graph Machine Learning: A Survey of Concepts, Techniques, and Applications

论文作者

Fu, Xingbo, Zhang, Binchi, Dong, Yushun, Chen, Chen, Li, Jundong

论文摘要

Graph Machine Learning最近在学术界和行业中都引起了人们的关注。大多数图形机器学习模型,例如图形神经网络(GNN),都经过大量的图形数据训练。但是,在许多实际情况下,例如医疗保健系统中的住院预测,图形数据通常存储在多个数据所有者中,并且由于隐私问题和法规限制,任何其他方都无法直接访问。联合图机器学习(FGML)是一种有前途的解决方案,可以通过以联合方式训练图机学习模型来应对这一挑战。在这项调查中,我们对FGML文献进行了全面的综述。具体而言,我们首先提供了一种新的分类法,将FGML中的现有问题分为两个设置,即使用结构化数据和结构化的FL。然后,我们回顾每个环境中的主流技术,并详细介绍它们如何应对FGML下的挑战。此外,我们总结了来自不同域中FGML的现实应用程序,并介绍FGML中采用的开放图数据集和平台。最后,我们在现有研究中提出了一些局限性,并在该领域有前途的研究方向。

Graph machine learning has gained great attention in both academia and industry recently. Most of the graph machine learning models, such as Graph Neural Networks (GNNs), are trained over massive graph data. However, in many real-world scenarios, such as hospitalization prediction in healthcare systems, the graph data is usually stored at multiple data owners and cannot be directly accessed by any other parties due to privacy concerns and regulation restrictions. Federated Graph Machine Learning (FGML) is a promising solution to tackle this challenge by training graph machine learning models in a federated manner. In this survey, we conduct a comprehensive review of the literature in FGML. Specifically, we first provide a new taxonomy to divide the existing problems in FGML into two settings, namely, FL with structured data and structured FL. Then, we review the mainstream techniques in each setting and elaborate on how they address the challenges under FGML. In addition, we summarize the real-world applications of FGML from different domains and introduce open graph datasets and platforms adopted in FGML. Finally, we present several limitations in the existing studies with promising research directions in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源