论文标题

Neumesh:学习分离的基于神经网格的隐性字段,用于几何和纹理编辑

NeuMesh: Learning Disentangled Neural Mesh-based Implicit Field for Geometry and Texture Editing

论文作者

Yang, Bangbang, Bao, Chong, Zeng, Junyi, Bao, Hujun, Zhang, Yinda, Cui, Zhaopeng, Zhang, Guofeng

论文摘要

最近,神经隐式渲染技术已经迅速发展,并在新型视图合成和3D场景重建中显示出很大的优势。但是,用于编辑目的的现有神经渲染方法提供了有限的功能,例如刚性转换,或不适用于日常生活中的一般物体的细粒度编辑。在本文中,我们通过在网格顶点上使用分离的几何形状和纹理代码编码神经隐式字段来介绍一种新型的基于网格的表示,该字段促进了一组编辑功能,包括网状引导的几何形状编辑,指定的纹理编辑,纹理编辑,纹理交换,填充,填充,填充,填充和绘画操作。为此,我们开发了几种技术,包括可学习的符号指标,以扩大基于网格的表示,蒸馏和微调机制的空间区分性,以稳定地收敛,以及空间感知的优化策略,以实现精确的纹理编辑。关于真实和合成数据的广泛实验和编辑示例都证明了我们方法在表示质量和编辑能力上的优越性。代码可在项目网页上找到:https://zju3dv.github.io/neumesh/。

Very recently neural implicit rendering techniques have been rapidly evolved and shown great advantages in novel view synthesis and 3D scene reconstruction. However, existing neural rendering methods for editing purposes offer limited functionality, e.g., rigid transformation, or not applicable for fine-grained editing for general objects from daily lives. In this paper, we present a novel mesh-based representation by encoding the neural implicit field with disentangled geometry and texture codes on mesh vertices, which facilitates a set of editing functionalities, including mesh-guided geometry editing, designated texture editing with texture swapping, filling and painting operations. To this end, we develop several techniques including learnable sign indicators to magnify spatial distinguishability of mesh-based representation, distillation and fine-tuning mechanism to make a steady convergence, and the spatial-aware optimization strategy to realize precise texture editing. Extensive experiments and editing examples on both real and synthetic data demonstrate the superiority of our method on representation quality and editing ability. Code is available on the project webpage: https://zju3dv.github.io/neumesh/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源