论文标题

Ginzburg-Landau系统的螺旋涡旋细丝$ {\ Mathbb r}^3 $

The helical vortex filaments of Ginzburg-Landau system in ${\mathbb R}^3$

论文作者

Duan, Lipeng, Gao, Qi, Yang, Jun

论文摘要

我们在$ {\ mathbb r}^3 $ \ begin {align*} \ begin {cases}-ε^2Δw^^+ +\ big [a _+\ big(| w^+|^2- {t^+}^2 \ big)+b \ big(| w^ - |^2- {t^ - }^2 \ big)\ big] w^+= 0,\\ [3mm] +\ big [a _- \ big(| w^ - |^2- {t^ - }^2 \ big)+b \ big(| w^+|^2- {t^+}^2 \ big)常数系数满足$$ a_+,a _-> 0,\ Quad B^2 <a_+a_--,\ Quad T^\ pm> 0,\ Quad {t^+}^2+ {t^ - }^ - }^2 = 1。 $$如果$ b <0 $,那么对于每一个$ε$,我们就会建立一个整个解决方案的家庭$w_ε(\ tilde {z},t),t)\ in \ mathbb {c}^2 $ in canlindrical coortinates $(\ tilde {z},tilde {z},t)通过J.Dávila,M。DelPino,M。Medina和R. Rodiac在{\ tt arXiv:1901.02807}中引入的方法。这些解决方案为$2π$ - 周期为$ t $,并具有多个相互作用的涡旋螺旋。主要的结果是在$ \ Mathbb {r}^3 $中相互作用的(单个)Ginzburg-landau方程相互作用的螺旋涡旋丝的现象的扩展。我们的结果对Gibbons的猜想\ Cite {Gibbons猜想}对Ginzburg-Landau系统版本中的Allen-Cahn方程式进行了负面影响,这是H. Brezis最初提出的问题的扩展。

We consider the following coupled Ginzburg-Landau system in ${\mathbb R}^3$ \begin{align*} \begin{cases} -ε^2 Δw^+ +\Big[A_+\big(|w^+|^2-{t^+}^2\big)+B\big(|w^-|^2-{t^-}^2\big)\Big]w^+=0, \\[3mm] -ε^2 Δw^- +\Big[A_-\big(|w^-|^2-{t^-}^2\big)+B\big(|w^+|^2-{t^+}^2\big)\Big]w^-=0, \end{cases} \end{align*} where $w=(w^+, w^-)\in \mathbb{C}^2$ and the constant coefficients satisfy $$ A_+, A_->0,\quad B^2<A_+A_-, \quad t^\pm >0, \quad {t^+}^2+{ t^-}^2=1. $$ If $B<0$, then for every $ε$ small enough, we construct a family of entire solutions $w_ε(\tilde{z}, t)\in \mathbb{C}^2$ in the cylindrical coordinates $(\tilde{z}, t)\in \mathbb{R}^2 \times \mathbb{R}$ for this system via the approach introduced by J. Dávila, M. del Pino, M. Medina and R. Rodiac in {\tt arXiv:1901.02807}. These solutions are $2π$-periodic in $t$ and have multiple interacting vortex helices. The main results are the extensions of the phenomena of interacting helical vortex filaments for the classical (single) Ginzburg-Landau equation in $\mathbb{R}^3$ which has been studied in {\tt arXiv:1901.02807}. Our results negatively answer the Gibbons conjecture \cite{Gibbons conjecture} for the Allen-Cahn equation in Ginzburg-Landau system version, which is an extension of the question originally proposed by H. Brezis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源