论文标题

连续基于触摸的身份验证建模的技术

Techniques for Continuous Touch-Based Authentication Modeling

论文作者

Georgiev, Martin, Eberz, Simon, Martinovic, Ivan

论文摘要

在过去的十年中,基于触摸的身份验证领域一直在迅速发展,由于研究了多种方法,为研究人员和应用程序开发人员而言,为研究人员和应用程序开发人员创造了一个零散且难以行驶的领域。在这项研究中,我们对基于触摸的身份验证系统中用于特征提取,分类和聚集的技术以及每项研究报告的性能指标进行了系统文献分析。根据我们的发现,我们设计了一组实验,以比较明确定义的条件下现场最常用技术的性能。此外,我们介绍了三种针对基于触摸的身份验证的新技术:扩展的功能集(由149个独特功能组成),一个基于多Algorithm集合的分类器和基于复发性神经网络的堆叠聚合方法。比较包括14个特征集,11个分类器和5种聚合方法。总共检查了219种模型配置,我们表明我们的新技术的表现优于每个类别中的当前最新技术。该结果还将在三个不同的公开数据集中进行验证。最后,我们讨论了调查的发现,目的是使研究人员和从业人员更容易理解和访问。

The field of touch-based authentication has been rapidly developing over the last decade, creating a fragmented and difficult-to-navigate area for researchers and application developers alike due to the variety of methods investigated. In this study, we perform a systematic literature analysis of 30 studies on the techniques used for feature extraction, classification, and aggregation in touch-based authentication systems as well as the performance metrics reported by each study. Based on our findings, we design a set of experiments to compare the performance of the most frequently used techniques in the field under clearly defined conditions. In addition, we introduce three new techniques for touch-based authentication: an expanded feature set (consisting of 149 unique features), a multi-algorithm ensemble-based classifier, and a Recurrent Neural Network based stacking aggregation method. The comparison includes 14 feature sets, 11 classifiers, and 5 aggregation methods. In total, 219 model configurations are examined and we show that our novel techniques outperform the current state-of-the-art in each category. The results are also validated across three different publicly available datasets. Finally, we discuss the findings of our investigation with the aim of making the field more understandable and accessible for researchers and practitioners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源