论文标题
Series2Graph:基于图的子序列的时间序列异常检测
Series2Graph: Graph-based Subsequence Anomaly Detection for Time Series
论文作者
论文摘要
长序列中的子序列异常检测是在广泛域中应用的重要问题。但是,迄今为止文献中提出的方法具有严重的局限性:它们要么需要用于设计异常发现算法的先前领域知识,要么在相同类型的反复异常的情况下使用繁琐且昂贵。在这项工作中,我们解决了这些问题,并提出了一种适用于域的不可识别子序列异常检测的无监督方法。我们的方法series2graph基于新型低维嵌入子序列的图表。 Series2Graph不需要标记的实例(例如监督技术),也不需要无异常的数据(例如零阳性学习技术),也不需要识别长度不同的异常。在迄今为止使用的最大合成和真实数据集的实验结果表明,所提出的方法正确地识别了单个和复发异常,而没有任何先验的特征,而不是在准确性上超过几种竞争性的方法,同时要超过几种竞争的方法,同时又要快速加快了数量级。本文出现在VLDB 2020中。
Subsequence anomaly detection in long sequences is an important problem with applications in a wide range of domains. However, the approaches proposed so far in the literature have severe limitations: they either require prior domain knowledge used to design the anomaly discovery algorithms, or become cumbersome and expensive to use in situations with recurrent anomalies of the same type. In this work, we address these problems, and propose an unsupervised method suitable for domain agnostic subsequence anomaly detection. Our method, Series2Graph, is based on a graph representation of a novel low-dimensionality embedding of subsequences. Series2Graph needs neither labeled instances (like supervised techniques) nor anomaly-free data (like zero-positive learning techniques), and identifies anomalies of varying lengths. The experimental results, on the largest set of synthetic and real datasets used to date, demonstrate that the proposed approach correctly identifies single and recurrent anomalies without any prior knowledge of their characteristics, outperforming by a large margin several competing approaches in accuracy, while being up to orders of magnitude faster. This paper has appeared in VLDB 2020.