论文标题

在线自适应个性化面部反欺骗

Online Adaptive Personalization for Face Anti-spoofing

论文作者

Belli, Davide, Das, Debasmit, Major, Bence, Porikli, Fatih

论文摘要

面部身份验证系统需要强大的反弹药模块,因为它们可以通过制造授权用户的欺骗图像来欺骗它们。最新的面对反欺骗方法依靠优化的体系结构和培训目标来减轻火车和测试用户之间的分配变化。但是,在实际的在线方案中,过去来自用户的数据包含可用于减轻分销转移的有价值信息。因此,我们介绍OAP(在线自适应个性化):一种轻巧的解决方案,可以使用未标记的数据在线调整模型。 OAP可以应用于大多数抗散热方法的顶部,而无需存储原始的生物特征图像。通过在SIW数据集上的实验评估,我们表明OAP可以提高单个视频设置和持续设置上现有方法的识别性能,在这种情况下,欺骗视频与现场演出交流以模拟欺骗攻击。我们还进行消融研究以确认解决方案的设计选择。

Face authentication systems require a robust anti-spoofing module as they can be deceived by fabricating spoof images of authorized users. Most recent face anti-spoofing methods rely on optimized architectures and training objectives to alleviate the distribution shift between train and test users. However, in real online scenarios, past data from a user contains valuable information that could be used to alleviate the distribution shift. We thus introduce OAP (Online Adaptive Personalization): a lightweight solution which can adapt the model online using unlabeled data. OAP can be applied on top of most anti-spoofing methods without the need to store original biometric images. Through experimental evaluation on the SiW dataset, we show that OAP improves recognition performance of existing methods on both single video setting and continual setting, where spoof videos are interleaved with live ones to simulate spoofing attacks. We also conduct ablation studies to confirm the design choices for our solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源