论文标题
定期媒体中几乎最小化的一相问题的大规模规律性
Large scale regularity of almost minimizers of the one-phase problem in periodic media
论文作者
论文摘要
我们证明,在周期性媒体中,一相不自由边界能量功能的最小化和几乎最小化的人满足大规模(1)Lipschitz估计值(2)自由边界平面表示Lipschitz的估计值。这些证明是基于De Silva和Savin引入的技术,用于在均匀媒体中几乎最小化。
We prove that minimizers and almost minimizers of one-phase free boundary energy functionals in periodic media satisfy large scale (1) Lipschitz estimates (2) free boundary flat implies Lipschitz estimates. The proofs are based on techniques introduced by De Silva and Savin for almost minimizers in homogeneous media.