论文标题
多体量子混乱和Ginibre合奏的出现
Many-body quantum chaos and emergence of Ginibre ensemble
论文作者
论文摘要
我们表明,在空间方向上的空间扩展的多体量子混沌系统中出现了非热的Ginibre随机矩阵行为,就像Hermitian随机矩阵行为在混乱系统中在时方向上出现一样。从转化不变模型开始,该模型可以与具有复杂值的双重传输矩阵相关联,我们表明,光谱形式的线性坡道必须使双光谱具有非平凡的相关性,实际上,这些相关性属于ginibre Ensemble的通用类别,通过计算水平的分布分布和分配谱系来证明。由于这种连接,可用于普遍描述转换型多体量子混沌系统的光谱形式的确切频谱形式,其中$ t $和$ l $很大,而$ l $和$ l $和$ l _ {\ mathrm {\ nathrm {\ th}} $的比率是固定的。通过适当的Ginibre模型变化,我们在分析上证明,我们的主张也概括为没有翻译不变性的模型。 Ginibre合奏的出现是我们考虑的量子混沌系统的强烈相互作用和空间扩展性质的真正结果,这与Hermitian随机矩阵集合的传统出现不同。
We show that non-Hermitian Ginibre random matrix behaviors emerge in spatially-extended many-body quantum chaotic systems in the space direction, just as Hermitian random matrix behaviors emerge in chaotic systems in the time direction. Starting with translational invariant models, which can be associated with dual transfer matrices with complex-valued spectra, we show that the linear ramp of the spectral form factor necessitates that the dual spectra have non-trivial correlations, which in fact fall under the universality class of the Ginibre ensemble, demonstrated by computing the level spacing distribution and the dissipative spectral form factor. As a result of this connection, the exact spectral form factor for the Ginibre ensemble can be used to universally describe the spectral form factor for translational invariant many-body quantum chaotic systems in the scaling limit where $t$ and $L$ are large, while the ratio between $L$ and $L_{\mathrm{Th}}$, the many-body Thouless length is fixed. With appropriate variations of Ginibre models, we analytically demonstrate that our claim generalizes to models without translational invariance as well. The emergence of the Ginibre ensemble is a genuine consequence of the strongly interacting and spatially extended nature of the quantum chaotic systems we consider, unlike the traditional emergence of Hermitian random matrix ensembles.